We propose large‐pore titanium‐containing organosilylated mesoporous silica (Ti‐SBA‐15) as a highly efficient catalyst for the oxidative desulfurization (ODS) of refractory aromatic sulfur compounds with the aim to produce ultra‐low sulfur diesel. To achieve this, we synthesized a series of mesoporous Ti‐SBA‐15 catalysts according to a new procedure. The procedure is based on the controlled grafting of titanium chelates on SBA‐15 silica at low temperatures (5 °C). This specific synthesis procedure ensured a high dispersion of the required 4‐coordinate tetrahedral Ti4+ sites located on the mesopore surface. To substantiate the influence of the titanium content and mesopore size on the ODS performance of the catalysts, the parameters were varied in the range of 0.7 to 4.7 mol % (Si/Ti) and 5.1 to 9.0 nm, respectively. The resulting Ti‐SBA‐15 catalysts were then tested in the oxidative desulfurization (ODS) of model sulfur‐containing compounds in the presence of cumene hydroperoxide (CHP) as the organic oxidant. The ODS of a real industrial diesel fuel was also carried out in a continuous fixed bed reactor with the same Ti‐SBA‐15 catalysts and CHP. The catalytic results revealed that the Ti‐SBA‐15 catalysts with the largest pore sizes (>7.3 nm) and highest Ti contents (>2.8 mol %) were highly active catalysts for ODS reactions. Moreover, the catalysts with large pores and high Ti loadings appeared to be stable for over 30 h and were far less prone to deactivation than their equivalent Ti‐SBA‐15 samples with smaller pore diameters and lower Ti contents.
A series of binary PtRu catalysts with different Pt/Ru atomic ratios (from 7:3 to 3:7) were synthesized on a carbon support using the colloidal method; they were then used for electrooxidation of glycerol in acid media. X‐ray diffraction, transmission electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray absorption spectroscopy analyses were used to investigate particle size, size distribution, and structural and electronic properties of the prepared catalysts. Ru added to the Pt‐based catalysts caused structural and electronic modifications over the PtRu alloy catalyst formation. The electrocatalytic activities of PtRu/C series catalysts were investigated using cyclic voltammetry. The Pt5Ru5/C catalyst shows enhanced catalytic activity at least 40 % higher than that of the Pt/C catalyst, with improved stability for glycerol electrooxidation; these improvements are attributed to structural and electronic modifications of the Pt catalysts. Using an electrocatalytic batch reactor, product analysis after the oxidation reaction was performed by high‐performance liquid chromatography to determine and compare the reaction pathways on the Pt/C and PtRu/C catalysts. To understand different catalytic activities of glycerol oxidation on the PtRu alloy surfaces, density functional calculations were performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.