Protein glycosylation is an important posttranslational process, which regulates protein folding and functional expression. Studies have shown that abnormal glycosylation in tumor cells affects cancer progression and malignancy. In the current study, we have identified sialylated proteins using an alkynyl sugar probe in two different lung cancer cell lines, CL1-0 and CL1-5 with distinct invasiveness derived from the same parental cell line. Among the identified sialylated proteins, epidermal growth factor receptor (EGFR) was chosen to understand the effect of sialylation on its function. We have determined the differences in glycan sequences of EGFR in both cells and observed higher sialylation and fucosylation of EGFR in CL1-5 than in CL1-0. Further study suggested that overexpression of sialyltransferases in CL1-5 and α1,3-fucosyltransferases (FUT4 or FUT6) in CL1-5 and A549 cells would suppress EGFR dimerization and phosphorylation upon EGF treatment, as compared to the control and CL1-0 cells. Such modulating effects on EGFR dimerization were further confirmed by sialidase or fucosidase treatment. Thus, increasing sialylation and fucosylation could attenuate EGFRmediated invasion of lung cancer cells. However, incorporation of the core fucose by α1,6-fucosylatransferase (FUT8) would promote EGFR dimerization and phosphorylation.sialic acid | glycoproteomics | glycan sequencing | click chemistry | mass spectrometry
Heterogeneity of cancer stem/progenitor cells that give rise to different forms of cancer has been well demonstrated for leukemia. However, this fundamental concept has yet to be established for solid tumors including breast cancer. In this communication, we analyzed solid tumor cancer stem cell markers in human breast cancer cell lines and primary specimens using flow cytometry. The stem/progenitor cell properties of different marker expressing-cell populations were further assessed by in vitro soft agar colony formation assay and the ability to form tumors in NOD/SCID mice. We found that the expression of stem cell markers varied greatly among breast cancer cell lines. In MDA-MB-231 cells, PROCR and ESA, instead of the widely used breast cancer stem cell markers CD44+/CD24-/low and ALDH, could be used to highly enrich cancer stem/progenitor cell populations which exhibited the ability to self renew and divide asymmetrically. Furthermore, the PROCR+/ESA+ cells expressed epithelial-mesenchymal transition markers. PROCR could also be used to enrich cells with colony forming ability from MB-361 cells. Moreover, consistent with the marker profiling using cell lines, the expression of stem cell markers differed greatly among primary tumors. There was an association between metastasis status and a high prevalence of certain markers including CD44+/CD24−/low, ESA+, CD133+, CXCR4+ and PROCR+ in primary tumor cells. Taken together, these results suggest that similar to leukemia, several stem/progenitor cell-like subpopulations can exist in breast cancer.
A library of 27 sialosides, including seventeen 2,3-linked and ten 2,6-linked glycans, has been prepared to construct a glycan array and used to profile the binding specificity of different influenza hemagglutinins (HA) subtypes, especially from the 2009 swine-originated H1N1 and seasonal influenza viruses. It was found that the HAs from the 2009 H1N1 and the seasonal Brisbane strain share similar binding profiles yet different binding affinities toward various α2,6 sialosides. Analysis of the binding profiles of different HA subtypes indicate that a minimum set of 5 oligosaccharides can be used to differentiate influenza H1, H3, H5, H7, and H9 subtypes. In addition, the glycan array was used to profile the binding pattern of different influenza viruses. It was found that most binding patterns of viruses and HA proteins are similar and that glycosylation at Asn27 is essential for receptor binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.