Despite recent advances in the stimuliresponsive composites for oil storage and smart lubrication, achieving the high oil storage and recyclable smart-lubrication remains a challenge. Herein, a novel cobweb-like structural system consisting of oil warehouse and transportation system was designed and prepared and it shows high capacity of oil storage and recyclable smart-lubrication. Hollow SiO 2 microspheres grated of KH550 and porous polyimide (PPI) were used as oil warehouse and pipeline, respectively, to build the smart system. Because of the novel structure, the composites can keep both high oil-content and oil-retention. Applying stimuli on materials resulted in lubricants releasing on the contact surface which can reduce the friction and wear during sliding. However, removing stimuli, the capillary force induced the sucking back of lubricant into the interior of composites through interconnected small pores of PPI. On the basis of high oil storage and stimuli-responsive performance, the composites can be used for recyclable smart-lubrication. The composites showed remarkable lubricating properties (coefficient of friction 0.056 and Ws 3.55 × 10 −7 mm 3 N −1 m −1 ) when the content of KHSM (hollow silica microspheres grated of KH550 (3-Aminopropyltriethoxysilane)) was 1.5 wt % by subjecting it to macroscopic pin-on-disc friction tests. Therefore, cobweb-like structural composites with oil warehouse and transportation system hold the promise for formulating of high oil storage and recyclable smart-lubrication.
Photosynthetic rates in different development stages were carefully investigated in 18 cultivars of winter wheat released in the period between 1945 and 1995 in the area of Beijing, China. During this period, the recorded grain yield has increased eightfold. However, when those cultivars were planted and managed in the same environment, the difference was reduced to only 36%, indicating that agronomic practices are the most important factors for grain yield. Agronomic features have changed greatly in the past 50 years, through increasing the harvest index (R2 = 0.89, P < 0.05), shortening plant height (R2 = 0.77, P < 0.05) and slightly increasing flag leaf areas (R2 = 0.45, P < 0.05), which is mostly in agreement with many other researchers. In contrast to many reports, however, this study found a genetic increase in the rate of photosynthesis per unit leaf area. From the mid-stem elongation to soft dough stages, the average photosynthetic rates at saturated photosynthetic photon flux density (P(sat)) increased by 44%. In the process, the stomatal conductance (g(s)) also increased by 122%. Grain yield was positively related to the mean values of P(sat) (R2 = 0.61, P < 0.01) and g(s) (R2 = 0.67, P < 0.01) in the six development stages. Our experiment may suggest that increase in grain yield was associated with the elevation of leaf photosynthetic rate and stomatal conductance over the past 50 years.
Two-dimensional (2D) lamellar materials have unique molecular structures and mechanical properties, among which molybdenum disulfide (MoS 2) and graphitic carbon nitride (g-C 3 N 4) with different interaction forces served as reinforcing phase for polytetrafluoroethylene (PTFE) composites in the present study. Thermal stability, tribological and thermomechanical properties of composites were comprehensively investigated. It was demonstrated that g-C 3 N 4 improved elastic deformation resistance and thermal degradation characteristics. The addition of g-C 3 N 4 significantly enhanced anti-wear performance under different loads and speeds. The results indicated that PTFE composites reinforced by g-C 3 N 4 were provided with better properties because the bonding strength of g-C 3 N 4 derived from hydrogen bonds (H-bonds) was stronger than that of MoS 2 with van der Waals force. Consequently, g-C 3 N 4 exhibited better thermomechanical and tribological properties. The result of this work is expected to provide a new kind of functional filler for enhancing the tribological properties of polymer composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.