It is highly desirable to design a single modality that can simultaneously trigger apoptosis and ferroptosis to efficiently eliminate tumor progression. Herein, a nanosystem based on the intrinsic properties of tumor microenvironment (TME) is designed to achieve tumor control through the simultaneous induction of ferroptosis and apoptosis. CuCP molecules are encapsulated in a liposome‐based nanosystem to assemble into biocompatible and stable CuCP nanoparticles (CuCP Lipo NPs). This nanosystem intrinsically possesses nanozymatic activity and photothermal characteristics due to the property of Cu atoms and the structure of CuCP Lipo NPs. It is demonstrated that the synergistic strategy increases the intracellular lipid‐reactive oxides species, induces the occurrence of ferroptosis and apoptosis, and completely eradicates the tumors in vivo. Proteomics analysis further discloses the key involved proteins (including Tp53, HMOX1, Ptgs2, Tfrc, Slc11a2, Mgst2, Sod1, and several GST family members) and pathways (including apoptosis, ferroptosis, and ROS synthesis). Conclusively, this work develops a strategy based on one nanosystem to synergistically induce ferroptosis and apoptosis in vivo for tumor suppression, which holds great potential in the clinical translation for tumor therapy.
Ever since the discovery of insulin, natural peptides have become an important resource for therapeutic development. Decades of research has led to the discovery of a long list of peptide drugs with broad applications in clinics, from antibiotics to hypertension treatment to pain management. Many of these US FDA‐approved peptide drugs are derived from microorganisms and animals. By contrast, the great potential of plant cyclic peptides as therapeutics remains largely unexplored. These macrocyclic peptides typically have rigid structures, good bioavailability and membrane permeability, making them appealing candidates for drug development and engineering. In this review, we introduce the three major classes of plant cyclic peptides and summarize their potential medical applications. We discuss how we can leverage the genome information of many different plants to quickly search for new cyclic peptides and how we can take advantage of the insights gained from their biosynthetic pathways to transform the process of production and drug development. These recent developments have provided a new angle for exploring and exploiting plant cyclic peptides, and we believe that many more peptide drugs derived from plants are about to come.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.