Bone lesions above a critical size become scarred rather than regenerated, leading to nonunion. We have attempted to obtain a greater degree of regeneration by using a resorbable scaffold with regeneration-competent cells to recreate an embryonic environment in injured adult tissues, and thus improve clinical outcome. We have used a combination of a coral scaffold with in vitro-expanded marrow stromal cells (MSC) to increase osteogenesis more than that obtained with the scaffold alone or the scaffold plus fresh bone marrow. The efficiency of the various combinations was assessed in a large segmental defect model in sheep. The tissue-engineered artificial bone underwent morphogenesis leading to complete recorticalization and the formation of a medullary canal with mature lamellar cortical bone in the most favorable cases. Clinical union never occurred when the defects were left empty or filled with the scaffold alone. In contrast, clinical union was obtained in three out of seven operated limbs when the defects were filled with the tissue-engineered bone.
Trabecular bone loss in estrogen deficiency is associated with enhanced bone resorption with a smaller increase in bone formation. We previously reported that low doses of strontium can increase trabecular bone volume in rodents by affecting bone resorption and formation. In this study we determined the effect of a new divalent strontium salt (S12911) on bone loss induced by E2 deficiency. Sprague-Dawley female rats (230 g, n = 15-25 per group) were sham operated or ovariectomized (OVX) and treated with 170-estradiol (E2, 10 pg/kg/day, sc) or S12911 by gavage at the dose of 77, 154, or 308 mg/kg/day or the vehicle. Treatment for 60 days with S12911 resulted in a dose-dependent increase in plasma, urine, and bone strontium concentrations without any deleterious effect on total or skeletal growth. OVX rats were osteopenic compared to sham rats as shown by decreased femoral dry bone weight and mineral content measured on bone ash and by DXA. Treatment of OVX rats with S12911 prevented bone loss as bone ash and bone mineral content were restored to the values in sham rats. Trabecular bone volume measured by histomorphometry on the tibia1 metaphysis was decreased by 46% in OVX rats and was corrected by E2. Treatment of OVX rats with S12911 increased the trabecular bone volume by 30-36%. Histomorphometric indices of bone resorption (osteoclast surface and number) were increased in OVX rats and were reduced by S12911 to the levels in sham rats. In contrast to this inhibitory effect on bone resorption, the osteoid surface, osteoblast surface, mineral apposition rate, and bone formation rate were as high in OVX rats treated with S12911 as in untreated OVX rats. In addition, plasma osteocalcin (OC) and alkaline phosphatase (ALP) levels remained elevated or were further increased in OVX rats treated with S12911. In contrast, treatment with E2 reduced both bone resorption and formation and plasma ALP and OC to the levels in sham rats. The data indicate that the divalent strontium salt S12911 is acting as an uncoupling agent that can prevent the femoral osteopenia and partially prevent the trabecular bone loss in E2-deficient rats by inhibiting bone resorption without reducing bone formation.
Trabecular bone loss in estrogen deficiency is associated with enhanced bone resorption with a smaller increase in bone formation. We previously reported that low doses of strontium can increase trabecular bone volume in rodents by affecting bone resorption and formation. In this study we determined the effect of a new divalent strontium salt (S12911) on bone loss induced by E2 deficiency. Sprague-Dawley female rats (230 g, n = 15-25 per group) were sham operated or ovariectomized (OVX) and treated with 17 beta-estradiol (E2, 10 micrograms/kg/day, sc) or S12911 by gavage at the dose of 77, 154, or 308 mg/kg/day or the vehicle. Treatment for 60 days with S12911 resulted in a dose-dependent increase in plasma, urine, and bone strontium concentrations without any deleterious effect on total or skeletal growth. OVX rats were osteopenic compared to sham rats as shown by decreased femoral dry bone weight and mineral content measured on bone ash and by DXA. Treatment of OVX rats with S12911 prevented bone loss as bone ash and bone mineral content were restored to the values in sham rats. Trabecular bone volume measured by histomorphometry on the tibial metaphysis was decreased by 46% in OVX rats and was corrected by E2. Treatment of OVX rats with S12911 increased the trabecular bone volume by 30-36%. Histomorphometric indices of bone resorption (osteoclast surface and number) were increased in OVX rats and were reduced by S12911 to the levels in sham rats.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.