The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics [1][2][3] . These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities 4-10 . Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period 11 . Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.All grapevine varieties are highly heterozygous; preliminary data showed that there was as much as 13% sequence divergence between alleles, which would hinder reliable contig assembly when a wholegenome shotgun strategy was used for sequencing. Our consortium therefore selected the grapevine PN40024 genotype for sequencing. This line, originally derived from Pinot Noir, has been bred close to full homozygosity (estimated at about 93%) by successive selfings, permitting a high-quality whole-genome shotgun assembly.A total of 6.2 million end-reads were produced by our consortium, representing an 8.4-fold coverage of the genome. Within the assembly, performed with Arachne 12 , 316 supercontigs represent putative allelic haplotypes that constitute 11.6 million bases (Mb). These values are in good fit with the 7% residual heterozygosity of PN40024 assessed by using genetic markers. When considering only one of the haplotypes in each heterozygous region, the assembly (Table 1a) consists of 19,577 contigs (N 50 5 65.9 kilobases (kb), where N 50 corresponds to the size of the shorter supercontig or contig in a subset representing half of the assembly size) and 3,514 supercontigs (N 50 5 2.07 Mb) totalling 487 Mb. This value is close to the 475 Mb previously reported for the grapevine genome size 13 .Using a set of 409 molecular markers from the reference grapevine map 14 , 69% of the assembled 487 Mb, arranged into 45 ultracontigs
Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ,900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.Access to entire genome sequences is revolutionizing our understanding of how genetic information is stored and organized in DNA, and how it has evolved over time. The sequence of a genome provides exquisite detail of the gene catalogue within a species, and the recent analysis of near-complete genome sequences of three mammals (human 1 , mouse 2 and rat 3 ) shows the acceleration in the search for causal links between genotype and phenotype, which can then be related to physiological, ecological and evolutionary observations. The partial sequence of the compact puffer fish Takifugu rubripes genome was obtained recently and this survey provided a preliminary catalogue of fish genes 4 . However, the Takifugu assembly is highly fragmented and as a result important questions could not be addressed.Here, we describe and analyse the genome sequence of the freshwater puffer fish Tetraodon nigroviridis with long-range linkage and extensive anchoring to chromosomes. Tetraodon resembles Takifugu in that it possesses one of the smallest known vertebrate genomes, but as a popular aquarium fish it is readily available and is easily maintained in tap water (see Supplementary Notes for naming conventions, natural habitat and phylogeny). The two puffer fish diverged from a common ancestor between 18-30 million years (Myr) ago and from the common ancestor with mammals about 450 Myr ago 5 . This long evolutionary distance provides a good contrast to distinguish conserved features from neutrally evolving DNA by sequence comparison. Tetraodon sequences in fact had an important role in providing a reliable estimate of the number of genes in the human genome 6 . There has been a vigorous and unresolved debate as to whether a whole-genome duplication (WGD) occurred in the ray-finned fish (actinopterygians) lineage after its separation from tetrapods [7][8][9] . By exploiting the extensive anchoring of the Tetraodon sequence to chromosomes, we provide a definitive answer to this question. The distribution of duplicated genes in t...
Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall-degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.Plant-parasitic nematodes are responsible for global agricultural losses amounting to an estimated $157 billion annually. Although chemical nematicides are the most reliable means of controlling root-knot nematodes, they are increasingly being withdrawn owing to their toxicity to humans and the environment. Novel and specific targets are thus needed to develop new strategies against these pests.The Southern root-knot nematode Meloidogyne incognita is able to infect the roots of almost all cultivated plants, making it perhaps the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.