Summary SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE2 1 , and is a major antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising antibodies in an immune suppressed individual treated with convalescent plasma, generating whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was observed in the overall viral population structure following two courses of remdesivir over the first 57 days. However, following convalescent plasma therapy we observed large, dynamic virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and ΔH69/ΔV70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype diminished in frequency, before returning during a final, unsuccessful course of convalescent plasma. In vitro , the Spike escape double mutant bearing ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be the main contributor to decreased susceptibility but incurred an infectivity defect. The ΔH69/ΔV70 single mutant had two-fold higher infectivity compared to wild type, possibly compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy associated with emergence of viral variants with evidence of reduced susceptibility to neutralising antibodies.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Identification of patients colonized with methicillin-resistant Staphylococcus aureus (MRSA) and subsequent isolation and decolonization is pivotal to the control of cross infection in hospitals. The aim of this study was to establish if early identification of colonized patients using rapid methods alone reduces transmission. A prospective, cluster, two-period cross-over design was used. Seven surgical wards at a large hospital were allocated to two groups, and for the first 8 months four wards used rapid MRSA screening and three wards used a standard culture method. The groups were reversed for the second 8 months. Regardless of the method of detection, all patients were screened for nasal carriage on admission and then every 4 days. MRSA control measures remained constant. Results were analysed using a log linear Poisson regression model. A total of 12 682/13 952 patient ward episodes (PWE) were included in the study. Admission screening identified 453 (3.6%) MRSA-positive patient ward episodes, with a further 268 (2.2%) acquiring MRSA. After adjusting for other variables, rapid screening was shown to statistically reduce MRSA acquisition, with patients being 1.49 times (p 0.007) more likely to acquire MRSA in wards where they were screened using the culture method. Screening of surgical patients using rapid testing resulted in a statistically significant reduction in MRSA acquisition. This result was achieved in a routine surgical service with high bed occupancy and low availability of isolation rooms, making it applicable to the majority of health-care systems worldwide.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-g and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A*01:01-restricted CD8+ ORF3a epitope FTSDYYQLY 207-215 ; due to P13L, P13S, and P13T in the B*27:05-restricted CD8+ nucleocapsid epitope QRNAP-RITF 9-17 ; and due to T362I and P365S in the A*03:01/A*11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK 361-369 . CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.