In mammals, Six5, Six4 and Six1 genes are co-expressed during mouse myogenesis. Six4 and Six5 single knockout (KO)mice have no developmental defects, while Six1 KO mice die at birth and show multiple organ developmental defects. We have generated Six1Six4 double KO mice and show an aggravation of the phenotype previously reported for the single Six1 KO. Six1Six4 double KO mice are characterized by severe craniofacial and rib defects, and general muscle hypoplasia. At the limb bud level, Six1 and Six4homeogenes control early steps of myogenic cell delamination and migration from the somite through the control of Pax3 gene expression. Impaired in their migratory pathway, cells of the somitic ventrolateral dermomyotome are rerouted, lose their identity and die by apoptosis. At the interlimb level, epaxial Met expression is abolished, while it is preserved in Pax3-deficient embryos. Within the myotome, absence of Six1and Six4 impairs the expression of the myogenic regulatory factors myogenin and Myod1, and Mrf4 expression becomes undetectable. Myf5 expression is correctly initiated but becomes restricted to the caudal region of each somite. Early syndetomal expression of scleraxis is reduced in the Six1Six4 embryo, while the myotomal expression of Fgfr4 and Fgf8 but not Fgf4 and Fgf6 is maintained. These results highlight the different roles played by Six proteins during skeletal myogenesis.
In mammals, Pax3, Six4, Six1 and Six5 genes are co-expressed with Eya1, Eya2 and Eya4 genes during mouse somitogenesis. To unravel the functions of Eya genes during muscle development, we analyzed myogenesis in Eya2-/- and in Eya1-/- embryos. A delay in limb myogenesis was observed between E10 and E13 in Eya1-/- embryos only, that is later compensated. Compound E18 Eya1-/-Eya2-/+ fetuses present a muscle phenotype comparable with that of Six1-/- fetuses; lacking a diaphragm and with a specific absence of limb muscles, suggesting either genetic epistasis between Six and Eya genes, or biochemical interactions between Six and Eya proteins. We tested these two non-exclusive possibilities. First, we show that Six proteins recruit Eya proteins to drive transcription during embryogenesis in the dermomyotomal epaxial and hypaxial lips of the somites by binding MEF3 DNA sites. Second, we show that Pax3 expression is lost in the ventrolateral (hypaxial) dermomyotomes of the somite in both Eya1-/-Eya2-/- embryos and in Six1-/-Six4-/- embryos, precluding hypaxial lip formation. This structure, from which myogenic cells delaminate to invade the limb does not form in these double mutant embryos, leading to limb buds without myogenic progenitor cells. Eya1 and Eya2, however, are still expressed in the somites of Six1Six4 double mutant and in splotch embryos, and Six1 is expressed in the somites of Eya1Eya2 double mutant embryos and in splotch embryos. Altogether these results show that Six and Eya genes lie genetically upstream of Pax3 gene in the formation of ventrolateral dermomyotome hypaxial lips. No genetic links have been characterized between Six and Eya genes, but corresponding proteins activate key muscle determination genes (Myod, Myogenin and Mrf4). These results establish a new hierarchy of genes controlling early steps of hypaxial myogenic commitment in the mouse embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.