SummaryBackgroundEGFR overexpression occurs in 27–55% of oesophagogastric adenocarcinomas, and correlates with poor prognosis. We aimed to assess addition of the anti-EGFR antibody panitumumab to epirubicin, oxaliplatin, and capecitabine (EOC) in patients with advanced oesophagogastric adenocarcinoma.MethodsIn this randomised, open-label phase 3 trial (REAL3), we enrolled patients with untreated, metastatic, or locally advanced oesophagogastric adenocarcinoma at 63 centres (tertiary referral centres, teaching hospitals, and district general hospitals) in the UK. Eligible patients were randomly allocated (1:1) to receive up to eight 21-day cycles of open-label EOC (epirubicin 50 mg/m2 and oxaliplatin 130 mg/m2 on day 1 and capecitabine 1250 mg/m2 per day on days 1–21) or modified-dose EOC plus panitumumab (mEOC+P; epirubicin 50 mg/m2 and oxaliplatin 100 mg/m2 on day 1, capecitabine 1000 mg/m2 per day on days 1–21, and panitumumab 9 mg/kg on day 1). Randomisation was blocked and stratified for centre region, extent of disease, and performance status. The primary endpoint was overall survival in the intention-to-treat population. We assessed safety in all patients who received at least one dose of study drug. After a preplanned independent data monitoring committee review in October, 2011, trial recruitment was halted and panitumumab withdrawn. Data for patients on treatment were censored at this timepoint. This study is registered with ClinicalTrials.gov, number NCT00824785.FindingsBetween June 2, 2008, and Oct 17, 2011, we enrolled 553 eligible patients. Median overall survival in 275 patients allocated EOC was 11·3 months (95% CI 9·6–13·0) compared with 8·8 months (7·7–9·8) in 278 patients allocated mEOC+P (hazard ratio [HR] 1·37, 95% CI 1·07–1·76; p=0·013). mEOC+P was associated with increased incidence of grade 3–4 diarrhoea (48 [17%] of 276 patients allocated mEOC+P vs 29 [11%] of 266 patients allocated EOC), rash (29 [11%] vs two [1%]), mucositis (14 [5%] vs none), and hypomagnesaemia (13 [5%] vs none) but reduced incidence of haematological toxicity (grade ≥3 neutropenia 35 [13%] vs 74 [28%]).InterpretationAddition of panitumumab to EOC chemotherapy does not increase overall survival and cannot be recommended for use in an unselected population with advanced oesophagogastric adenocarcinoma.FundingAmgen, UK National Institute for Health Research Biomedical Research Centre.
Purpose: Response to preoperative chemo-radiotherapy (CRT) varies. We assessed whether circulating tumor DNA (ctDNA) might be an early indicator of tumor response or progression to guide therapy adaptation in rectal cancer.Experimental Design: A total of 243 serial plasma samples were analyzed from 47 patients with localized rectal cancer undergoing CRT. Up to three somatic variants were tracked in plasma using droplet digital PCR. RECIST and MRI tumor regression grade (mrTRG) evaluated response. Survival analyses applied Kaplan-Meier method and Cox regression.Results: ctDNA detection rates were: 74% (n ¼ 35/47) pretreatment, 21% (n ¼ 10/47) mid CRT, 21% (n ¼ 10/47) after completing CRT, and 13% (n ¼ 3/23) after surgery. ctDNA status after CRT was associated with primary tumor response by mrTRG (P ¼ 0.03). With a median follow-up of 26.4 months, metastases-free survival was shorter in patients with detectable ctDNA after completing CRT [HR 7.1; 95% confidence interval (CI), 2.4-21.5; P < 0.001], persistently detectable ctDNA pre and mid CRT (HR 3.8; 95% CI, 1.2-11.7; P ¼ 0.02), and pre, mid, and after CRT (HR 11.5; 95% CI, 3.3-40.4; P < 0.001) compared with patients with undetectable or nonpersistent ctDNA. In patients with detectable ctDNA, a fractional abundance threshold of !0.07% mid CRT or !0.13% after completing CRT predicted for metastases with 100% sensitivity and 83.3% specificity for mid CRT and 66.7% for CRT completion. All 3 patients with detectable ctDNA post-surgery relapsed compared with none of the 20 patients with undetectable ctDNA (P ¼ 0.001).Conclusions: ctDNA identified patients at risk of developing metastases during the neoadjuvant period and post-surgery, and could be used to tailor treatment.
Neoadjuvant CAPOX plus bevacizumab resulted in a high response rate for patients with CLMs with poor-risk features not selected for upfront resection and converted 40% of patients to resectability.
Background The T cell bispecific antibody cibisatamab (CEA-TCB) binds Carcino-Embryonic Antigen (CEA) on cancer cells and CD3 on T cells, which triggers T cell killing of cancer cell lines expressing moderate to high levels of CEA at the cell surface. Patient derived colorectal cancer organoids (PDOs) may more accurately represent patient tumors than established cell lines which potentially enables more detailed insights into mechanisms of cibisatamab resistance and sensitivity. Methods We established PDOs from multidrug-resistant metastatic CRCs. CEA expression of PDOs was determined by FACS and sensitivity to cibisatamab immunotherapy was assessed by co-culture of PDOs and allogeneic CD8 T cells. Results PDOs could be categorized into 3 groups based on CEA cell-surface expression: CEA hi ( n = 3), CEA lo ( n = 1) and CEA mixed PDOs ( n = 4), that stably maintained populations of CEA hi and CEA lo cells, which has not previously been described in CRC cell lines. CEA hi PDOs were sensitive whereas CEA lo PDOs showed resistance to cibisatamab. PDOs with mixed expression showed low sensitivity to cibisatamab, suggesting that CEA lo cells maintain cancer cell growth. Culture of FACS-sorted CEA hi and CEA lo cells from PDOs with mixed CEA expression demonstrated high plasticity of CEA expression, contributing to resistance acquisition through CEA antigen loss. RNA-sequencing revealed increased WNT/β-catenin pathway activity in CEA lo cells. Cell surface CEA expression was up-regulated by inhibitors of the WNT/β-catenin pathway. Conclusions Based on these preclinical findings, heterogeneity and plasticity of CEA expression appear to confer low cibisatamab sensitivity in PDOs, supporting further clinical evaluation of their predictive effect in CRC. Pharmacological inhibition of the WNT/β-catenin pathway may be a rational combination to sensitize CRCs to cibisatamab. Our novel PDO and T cell co-culture immunotherapy models enable pre-clinical discovery of candidate biomarkers and combination therapies that may inform and accelerate the development of immuno-oncology agents in the clinic. Electronic supplementary material The online version of this article (10.1186/s40425-019-0575-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.