Here, we highlight the potential translational benefits of delivering FLASH radiotherapy using ultra-high dose rates (>100 Gy·s −1 ). Compared with conventional dose-rate (CONV; 0.07-0.1 Gy·s −1 ) modalities, we showed that FLASH did not cause radiation-induced deficits in learning and memory in mice. Moreover, 6 months after exposure, CONV caused permanent alterations in neurocognitive end points, whereas FLASH did not induce behaviors characteristic of anxiety and depression and did not impair extinction memory. Mechanistic investigations showed that increasing the oxygen tension in the brain through carbogen breathing reversed the neuroprotective effects of FLASH, while radiochemical studies confirmed that FLASH produced lower levels of the toxic reactive oxygen species hydrogen peroxide. In addition, FLASH did not induce neuroinflammation, a process described as oxidative stress-dependent, and was also associated with a marked preservation of neuronal morphology and dendritic spine density. The remarkable normal tissue sparing afforded by FLASH may someday provide heretofore unrealized opportunities for dose escalation to the tumor bed, capabilities that promise to hasten the translation of this groundbreaking irradiation modality into clinical practice.ultra-high dose-rate irradiation | cognitive dysfunction | neuronal morphology | neuroinflammation | reactive oxygen species R adiation therapy (RT) remains an essential part of cancer treatment, and, today, the benefit of RT would increase dramatically if normal tissues surrounding the tumor could tolerate higher doses of radiation (1-3). In the last decade, major advances in high-precision treatment delivery and multimodal imaging have improved tolerance to RT (4), but the selective protection of normal tissue remains a significant clinical challenge and the radiation-induced toxicities still adversely impact the patient's quality of life. This latter fact largely remains an unmet medical need, and points to the urgency of developing improved RT modalities for combating those cancers refractory to treatment.This issue is especially critical for those afflicted with brain tumors, including glioblastoma multiforme (GBM), for which standard treatment consists of surgical resection followed by RT and concomitant chemotherapy (temozolomide). Typical radiotherapeutic protocols for GBM induce neurocognitive complications, including impairments in learning and memory, attention, and executive function and a variety of mood disorders (5-8). A breadth of past work from our laboratories has linked adverse neurocognitive outcomes following cranial irradiation to a range of neuropathologies, including reductions in dendritic complexity and spine density (9-12), reductions in microvascular density (13-15), reduced myelination and synapse density, and increased neuroinflammation (16,17). These changes are persistent and problematic in the conventionally irradiated brain and have prompted efforts to more fully develop a truly innovative approach to RT, where we have concept...