The specific grain interior and grain boundary conductivities, obtained from impedance spectroscopy and the brick layer model, are reported for BaZr 0.9 Y 0.1 O 3 − δ as a function of p O 2 and temperature. p O 2-dependencies were indicative of dominating ionic and p-type electronic conduction for the grain interior under reducing and oxidizing conditions, respectively, while the grain boundaries showed an additional n-type electronic contribution under reducing conditions. Transmission electron microscopy revealed enrichment of Y in the grain boundary region. These findings indicate the existence of space-charge layers in the grain boundaries. A grain boundary core-space-charge layer model is therefore applied to interpret the data. Using a Mott-Schottky approximation, a Schottky barrier height of 0.5-0.6 V and an effective grain boundary width of 8-10 nm (= 2× space-charge layer thickness) is obtained at 250°C in wet oxygen. Finite-element modelling of the complex impedance over a grain boundary with a space-charge layer depletion of protons yields a distorted semicircle as observed in the impedance spectra.
Toulouse Archive Ouverte (OATAO)OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.