Background: Concerns for arsenic exposure are not limited to toxic waste sites and massive poisoning events. Chronic exposure continues to be a major public health problem worldwide, affecting hundreds of millions of persons.Objectives: We reviewed recent information on worldwide concerns for arsenic exposures and public health to heighten awareness of the current scope of arsenic exposure and health outcomes and the importance of reducing exposure, particularly during pregnancy and early life.Methods: We synthesized the large body of current research pertaining to arsenic exposure and health outcomes with an emphasis on recent publications.Discussion: Locations of high arsenic exposure via drinking water span from Bangladesh, Chile, and Taiwan to the United States. The U.S. Environmental Protection Agency maximum contaminant level (MCL) in drinking water is 10 µg/L; however, concentrations of > 3,000 µg/L have been found in wells in the United States. In addition, exposure through diet is of growing concern. Knowledge of the scope of arsenic-associated health effects has broadened; arsenic leaves essentially no bodily system untouched. Arsenic is a known carcinogen associated with skin, lung, bladder, kidney, and liver cancer. Dermatological, developmental, neurological, respiratory, cardiovascular, immunological, and endocrine effects are also evident. Most remarkably, early-life exposure may be related to increased risks for several types of cancer and other diseases during adulthood.Conclusions: These data call for heightened awareness of arsenic-related pathologies in broader contexts than previously perceived. Testing foods and drinking water for arsenic, including individual private wells, should be a top priority to reduce exposure, particularly for pregnant women and children, given the potential for life-long effects of developmental exposure.
A meeting on the health effects of arsenic (As), its modes of action, and areas in need of future research was held in Hunt Valley, Maryland, on 22-24 September 1997. Exposure to As in drinking water has been associated with the development of skin and internal cancers and noncarcinogenic effects such as diabetes, peripheral neuropathy, and cardiovascular diseases. There is little data on specific mechanism(s) of action for As, but a great deal of information on possible modes of action. Although arsenite [As(III)] can inhibit more than 200 enzymes, events underlying the induction of the noncarcinogenic effects of As are not understood. With respect to carcinogenicity, As can affect DNA repair, methylation of DNA, and increase radical formation and activation of the protooncogene c-myc, but none of these potential pathways have widespread acceptance as the principal etiologic event. In addition, there are no accepted models for the study of As-induced carcinogenesis. At the final meeting session we considered research needs. Among the most important areas cited were a) As metabolism and its interaction with cellular constituents; b) possible bioaccumulation of As; c) interactions with other metals; d) effects of As on genetic material; e) development of animal models and cell systems to study effects of As; and f) a better characterization of human exposures as related to health risks. Some of the barriers to the advancement of As research included an apparent lack of interest in the United States on As research; lack of relevant animal models; difficulty with adoption of uniform methodologies; lack of accepted biomarkers; and the need for a central storage repository for stored specimens.
There are now robust data supporting the Developmental Origins of Health and Disease (DOHaD) paradigm. This includes human and animal data focusing on nutrition or environmental chemicals during development. However, the term DOHaD has not been generally accepted as the official term to be used when one is concerned with understanding the pathophysiological basis for how environmental influences acting during early development influence the risk of later noncommunicable diseases. Similarly, there is no global research or public health program built around the DOHaD paradigm that encompasses all aspects of environment. To better inform the global health efforts aimed at addressing the growing epidemic of chronic noncommunicable diseases of environmental origin, we propose a two-pronged approach: first, to make it clear that the current concept of DOHaD comprehensively includes a range of environmental factors and their relevance to disease occurrence not just throughout the life span but potentially across several generations; and second, to initiate the discussion of how adoption of DOHaD can promote a more realistic, accurate, and integrative approach to understanding environmental disruption of developmental programming and better inform clinical and policy interventions.
Millions now suffer the effects of chronic arseniasis related to environmental arsenic exposure. The biological mechanisms responsible for arsenic-induced toxicity and especially chronic effects, including cancer, are not well known. The U.S. Armed Forces Institute of Pathology (AFIP) is participating in an international research effort to improve this understanding by the development of the International Tissue and Tumor Repository for Chronic Arsenosis (ITTRCA). The ITTRCA obtains, archives, and makes available for research purposes, tissues from subjects exposed to arsenic. We provide here a short overview of arsenic-induced pathology, briefly describe arsenicinduced lesions in the skin and liver, and present five case reports from the ITTRCA. Arsenicinduced skin pathology includes hyperkeratosis, pigmentation changes, Bowen disease, squamous cell carcinoma, and basal cell carcinomas. A unique spectrum of skin lesions, known as arsenical keratosis, is rather characteristic of chronic arseniasis. Bowen disease, or squamous cell carcinoma in situ of the skin, has been well documented as a consequence of arsenical exposure. A spectrum of liver lesions has also been attributed to chronic arseniasis. Of these, hepatocellular carcinoma, angiosarcoma, cirrhosis, and hepatoportal sclerosis have been associated with arsenic exposure. We present case reports that relate to these health conditions, namely, squamous cell carcinoma, basal cell carcinoma, and Bowen disease of the skin and hepatocellular carcinoma and angiosarcoma of the liver. Four patients had been treated with arsenical medications for such conditions as asthma, psoriasis, and syphilis, and one case occurred in a boy chronically exposed to arsenic in drinking water. Key words: angiosarcoma, arsenic, Bowen disease, hepatocellular carcinoma, hepatoportal sclerosis, hyperkeratosis, liver, noncirrhotic portal fibrosis, squamous cell carcinoma.
Background:Exposure to inorganic and organic arsenic compounds is a major public health problem that affects hundreds of millions of people worldwide. Exposure to arsenic is associated with cancer and noncancer effects in nearly every organ in the body, and evidence is mounting for health effects at lower levels of arsenic exposure than previously thought. Building from a tremendous knowledge base with > 1,000 scientific papers published annually with “arsenic” in the title, the question becomes, what questions would best drive future research directions?Objectives:The objective is to discuss emerging issues in arsenic research and identify data gaps across disciplines.Methods:The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program convened a workshop to identify emerging issues and research needs to address the multi-faceted challenges related to arsenic and environmental health. This review summarizes information captured during the workshop.Discussion:More information about aggregate exposure to arsenic is needed, including the amount and forms of arsenic found in foods. New strategies for mitigating arsenic exposures and related health effects range from engineered filtering systems to phytogenetics and nutritional interventions. Furthermore, integration of omics data with mechanistic and epidemiological data is a key step toward the goal of linking biomarkers of exposure and susceptibility to disease mechanisms and outcomes.Conclusions:Promising research strategies and technologies for arsenic exposure and adverse health effect mitigation are being pursued, and future research is moving toward deeper collaborations and integration of information across disciplines to address data gaps.Citation:Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP, Birnbaum LS, Suk WA. 2016. Arsenic and environmental health: state of the science and future research opportunities. Environ Health Perspect 124:890–899; http://dx.doi.org/10.1289/ehp.1510209
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.