Head and neck squamous cell carcinoma (HNSC) patients are at risk of suffering from both pulmonary metastases or a second squamous cell carcinoma of the lung (LUSC). Differentiating pulmonary metastases from primary lung cancers is of high clinical importance, but not possible in most cases with current diagnostics. To address this, we performed DNA methylation profiling of primary tumors and trained three different machine learning methods to distinguish metastatic HNSC from primary LUSC. We developed an artificial neural network that correctly classified 96.4% of the cases in a validation cohort of 279 patients with HNSC and LUSC as well as normal lung controls, outperforming support vector machines (95.7%) and random forests (87.8%). Prediction accuracies of more than 99% were achieved for 92.1% (neural network), 90% (support vector machine), and 43% (random forest) of these cases by applying thresholds to the resulting probability scores and excluding samples with low confidence. As independent clinical validation of the approach, we analyzed a series of 51 patients with a history of HNSC and a second lung tumor, demonstrating the correct classifications based on clinicopathological properties. In summary, our approach may facilitate the reliable diagnostic differentiation of pulmonary metastases of HNSC from primary LUSC to guide therapeutic decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.