In the clinic, chimeric antigen receptor-modified T (CAR T) cell therapy is frequently associated with life-threatening cytokine-release syndrome (CRS) and neurotoxicity. Understanding the nature of these pathologies and developing treatments for them are hampered by the lack of appropriate animal models. Herein, we describe a mouse model recapitulating key features of CRS and neurotoxicity. In humanized mice with high leukemia burden, CAR T cell-mediated clearance of cancer triggered high fever and elevated IL-6 levels, which are hallmarks of CRS. Human monocytes were the major source of IL-1 and IL-6 during CRS. Accordingly, the syndrome was prevented by monocyte depletion or by blocking IL-6 receptor with tocilizumab. Nonetheless, tocilizumab failed to protect mice from delayed lethal neurotoxicity, characterized by meningeal inflammation. Instead, the IL-1 receptor antagonist anakinra abolished both CRS and neurotoxicity, resulting in substantially extended leukemia-free survival. These findings offer a therapeutic strategy to tackle neurotoxicity and open new avenues to safer CAR T cell therapies.
Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disease caused by arylsulfatase A (ARSA) deficiency. Patients with MLD exhibit progressive motor and cognitive impairment and die within a few years of symptom onset. We used a lentiviral vector to transfer a functional ARSA gene into hematopoietic stem cells (HSCs) from three presymptomatic patients who showed genetic, biochemical, and neurophysiological evidence of late infantile MLD. After reinfusion of the gene-corrected HSCs, the patients showed extensive and stable ARSA gene replacement, which led to high enzyme expression throughout hematopoietic lineages and in cerebrospinal fluid. Analyses of vector integrations revealed no evidence of aberrant clonal behavior. The disease did not manifest or progress in the three patients 7 to 21 months beyond the predicted age of symptom onset. These findings indicate that extensive genetic engineering of human hematopoiesis can be achieved with lentiviral vectors and that this approach may offer therapeutic benefit for MLD patients.
In allogeneic bone marrow transplantation (allo-BMT), donor lymphocytes play a central therapeutic role in both graft-versus-leukemia (GvL) and immune reconstitution. However, their use is limited by the risk of severe graft-versus-host disease (GvHD). Eight patients who relapsed or developed Epstein-Barr virus-induced lymphoma after T cell-depleted BMT were then treated with donor lymphocytes transduced with the herpes simplex virus thymidine kinase (HSV-TK) suicide gene. The transduced lymphocytes survived for up to 12 months, resulting in antitumor activity in five patients. Three patients developed GvHD, which could be effectively controlled by ganciclovir-induced elimination of the transduced cells. These data show that genetic manipulation of donor lymphocytes may increase the efficacy and safety of allo-BMT and expand its application to a larger number of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.