Background Deep Brain Stimulation (DBS) is thought to improve the symptoms of selected neurological disorders by modulating activity within dysfunctional brain circuits. To date, there is no evidence that DBS counteracts progressive neurodegeneration in any particular disorder. Objective/Hypothesis We hypothesized that DBS applied to the fornix in patients with Alzheimer’s Disease (AD) could have an effect on brain structure. Methods In six AD patients receiving fornix DBS, we used structural MRI to assess one-year change in hippocampal, fornix, and mammillary body volume. We also used deformation-based morphometry to identify whole-brain structural changes. We correlated volumetric changes to hippocampal glucose metabolism. We also compared volumetric changes to those in an age-, sex-, and severity-matched group of AD patients (n = 25) not receiving DBS. Results We observed bilateral hippocampal volume increases in the two patients with the best clinical response to fornix DBS. In one patient, hippocampal volume was preserved three years after diagnosis. Overall, mean hippocampal atrophy was significantly slower in the DBS group compared to the matched AD group, and no matched AD patients demonstrated bilateral hippocampal enlargement. Across DBS patients, hippocampal volume change correlated strongly with hippocampal metabolism and with volume change in the fornix and mammillary bodies, suggesting a circuit-wide effect of stimulation. Deformation-based morphometry in DBS patients revealed local volume expansions in several regions typically atrophied in AD. Conclusion We present the first in-human evidence that, in addition to modulating neural circuit activity, DBS may influence the natural course of brain atrophy in a neurodegenerative disease.
IMPORTANCE Patients with remitted major depressive disorder (MDD) were previously found to display abnormal functional magnetic resonance imaging connectivity (fMRI) between the right superior anterior temporal lobe (RSATL) and the subgenual cingulate cortex and adjacent septal region (SCSR) when experiencing self-blaming emotions relative to emotions related to blaming others (eg, "indignation or anger toward others"). This finding provided the first neural signature of biases toward overgeneralized self-blaming emotions (eg, "feeling guilty for everything"), known to have a key role in cognitive vulnerability to MDD. It is unknown whether this neural signature predicts risk of recurrence, a crucial step in establishing its potential as a prognostic biomarker, which is urgently needed for stratification into pathophysiologically more homogeneous subgroups and for novel treatments. OBJECTIVE To use fMRI in remitted MDD at baseline to test the hypothesis that RSATL-SCSR connectivity for self-blaming relative to other-blaming emotions predicts subsequent recurrence of depressive episodes. DESIGN, SETTING, AND PARTICIPANTS A prospective cohort study from June 16, 2011, to October 10, 2014, in a clinical research facility completed by 75 psychotropic medication-free patients with remitted MDD and no relevant comorbidity. In total, 31 remained in stable remission, and 25 developed a recurring episode over the 14 months of clinical follow-up and were included in the primary analysis. Thirty-nine control participants with no personal or family history of MDD were recruited for further comparison. MAIN OUTCOMES AND MEASURES Between-group difference (recurring vs stable MDD) in RSATL connectivity, with an a priori SCSR region of interest for self-blaming vs other-blaming emotions. RESULTS We corroborated our hypothesis that during the experience of self-blaming vs other-blaming emotions, RSATL-SCSR connectivity predicted risk of subsequent recurrence. The recurring MDD group showed higher connectivity than the stable MDD group (familywise error-corrected P < .05 over the a priori SCSR region of interest) and the control group. In addition, the recurring MDD group also exhibited RSATL hyperconnectivity with the right ventral putamen and claustrum and the temporoparietal junction. Together, these regions predicted recurrence with 75% accuracy. CONCLUSIONS AND RELEVANCE To our knowledge, this study is the first to provide a robust demonstration of an fMRI signature of recurrence risk in remitted MDD. Additional studies are needed for its further optimization and validation as a prognostic biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.