Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is the most common undifferentiated ovarian malignancy in women under 40 years of age. We sequenced the exomes of six individuals from three families with SCCOHT. After discovering segregating deleterious germline mutations in SMARCA4 in all three families, we tested DNA from a fourth affected family, which also carried a segregating SMARCA4 germline mutation. All the familial tumors sequenced harbored either a somatic mutation or loss of the wild-type allele. Immunohistochemical analysis of these cases and additional familial and non-familial cases showed loss of SMARCA4 (BRG1) protein in 38 of 40 tumors overall. Sequencing of cases with available DNA identified at least one germline or somatic deleterious SMARCA4 mutation in 30 of 32 cases. Additionally, the SCCOHT cell line BIN-67 had biallelic deleterious mutations in SMARCA4. Our findings identify alterations in SMARCA4 as the major cause of SCCOHT, which could lead to improvements in genetic counseling and new treatment approaches.
Purpose Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations. Patients and Methods Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS). Results Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered. Conclusion Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation.
Ovarian Sertoli-Leydig cell tumors (SLCTs) are uncommon sex cord-stromal tumors associated with both germ-line and somatic DICER1 mutations, the frequency of which has varied widely in different studies (0% to 62.5%). The current World Health Organization Classification includes 3 histologic types of SLCTs (well-differentiated, moderately differentiated, and poorly differentiated); heterologous elements and/or retiform patterns may be present in moderately and poorly differentiated neoplasms. We investigated the frequency of DICER1 mutations in a series of 38 ovarian tumors initially diagnosed as SLCTs, and explored whether identified mutations were associated with specific morphologic features. Specialist pathology review performed blinded to molecular results confirmed 34 tumors to be SLCTs (22 moderately differentiated, 8 poorly differentiated; 4 well-differentiated), while the remaining 4 neoplasms were considered not to represent SLCTs. Of the 34 cases diagnosed as SLCTs, 30 (88%) harbored ≥1 DICER1 mutation. All 30 moderately differentiated/poorly differentiated SLCTs contained mutations, but we did not find deleterious DICER1 mutations in the 4 well-differentiated SLCTs. Our study reports the highest DICER1 mutation frequency to date in SLCTs, with 100% of moderately differentiated and poorly differentiated tumors being DICER1-mutated. This suggests that DICER1 mutation may be a defining feature of these neoplasms. Although the number of cases is limited, well-differentiated SLCTs appear to be DICER1-independent. Moderately differentiated and poorly differentiated SLCT components often coexist with each other and form part of a spectrum, while well-differentiated SLCTs usually occur in pure form, suggesting that fundamentally, these represent 2 separate and independent tumor types with a different pathogenesis. We suggest that all patients with ovarian SLCTs undergo germ-line DICER1 mutation testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.