'Black silicon' (bSi) samples with surfaces covered in nanoneedles of varying length, areal density and sharpness, have been fabricated using a plasma etching process. These nanostructures were then coated with a conformal uniform layer of diamond using hot filament chemical vapour deposition to produce 'black diamond' (bD) surfaces. The effectiveness of these bSi and bD surfaces in killing Gram-negative (E. coli) and Gram-positive (S. gordonii) bacteria was investigated by culturing the bacteria on the surfaces for a set time and then measuring the live-to-dead ratio. All the nanostructured surfaces killed E. coli at a significantly higher rate than the respective flat Si or diamond control samples. The length of the needles was found to be less important than their separation, i.e. areal density. This is consistent with a model for mechanical bacteria death based on the stretching and disruption of the cell membrane, enhanced by the cells motility on the surfaces. In contrast, S. gordonii were unaffected by the nanostructured surfaces, possibly due to their smaller size, thicker cell membrane and/or their lack of motility.
Coating black silicon needles in a uniform layer of conducting boron-doped CVD diamond produces a high-surface-area electrode material that promising for electrochemical applications, as well as acting as a robust bactericidal surface.
‘Black silicon’ (bSi) samples with surfaces covered in nanoneedles of length ~5 µm were fabricated using a plasma etching process and then coated with a conformal uniform layer of diamond using hot filament chemical vapour deposition to produce ‘black diamond’ (bD) nanostructures. The diamond needles were then chemically terminated with H, O, NH
2
or F using plasma treatment, and the hydrophilicity of the resulting surfaces were assessed using water droplet contact-angle measurements, and scaled in the order O > H ≈NH
2
>F, with the F-terminated surface being superhydrophobic. The effectiveness of these differently terminated bD needles in killing the Gram-negative bacterium
E. coli
was semi-quantified by Live/Dead staining and fluorescence microscopy, and visualised by environmental scanning electron microscopy. The total number of adhered bacteria was consistent for all the nanostructured bD surfaces at around 50% of the value for the flat diamond control. This, combined with a chemical bactericidal effect of 20–30%, shows that the nanostructured bD surfaces supported significantly fewer viable
E. coli
than flat surfaces. Moreover, the bD surfaces were particularly effective at preventing the establishment of bacterial aggregates – a precursor to biofilm formation. The percentage of dead bacteria also decreased as a function of hydrophilicity. These results are consistent with a predominantly mechanical mechanism for bacteria death based on the stretching and disruption of the cell membrane, combined with an additional effect from the chemical nature of the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.