anthomonas oryzae pv. oryzae (Xoo) is the etiological agent of bacterial blight disease in rice. The disease is most severe in southeast Asia but is increasingly damaging in west African countries, and results in substantial yield loss 1. TALes from Xoo are injected by a type III secretion system into plant cells and recognize effector-binding elements (EBEs) in cognate SWEET host gene promoters, which results in induction of SWEET genes and production of sugars that enable disease susceptibility in rice 2,3. An array of central repeats, which are 34-35 amino acids long, are present in each TALe and interact with EBEs via two repeat variable di-residues (RVDs) at the 12th and 13th position of each repeat 4,5. Aberrant repeats, longer than 35 amino acids, are hypothesized to allow looping out of the repeat to accommodate alternate sequence binding for a particular TALe 6. Bacterial blight depends on TALe-mediated induction of at least one member of a family of sugar-transporter genes. Although rice has more than 20 SWEET genes, only those of clade III are reported to be induced by Xoo 7-10. Although all five of the known clade III SWEET genes in rice can function as susceptibility genes for bacterial blight, only three are known to be targeted in nature 10. More specifically, SWEET11 expression is induced by strains encoding the TALe PthXo1, SWEET13 by PthXo2 and SWEET14 by any one of several TALes, namely AvrXa7, PthXo3, TalC and TalF (originally Tal5) 7,9-15 (Table 1). Effectors of Xoo that target clade III SWEET genes are referred to as major TALes owing to their strong virulence effect. Naturally occurring resistance has arisen as the result of nucleotide polymorphisms in EBEs of SWEET promoters. EBE alleles of SWEET11 that are not recognized by PthXo1 are collectively referred to as the recessive resistance gene xa13. Rice varieties containing xa13 are resistant to strains that solely depend on PthXo1 for SWEET induction. Most indica rice varieties carry a SWEET13 allele that contains four adenines in the EBE for PthXo2, and rice lines carrying this allele are susceptible to PthXo2-dependent strains 12. A rare exception is the recessive resistance allele xa25, which contains three adenines in the EBE for SWEET13 in the indica cultivar Minghui 63, conferring resistance to strains that depend solely on PthXo2 16. A similar recessive resistance allele in japonica rice varieties is equally effective against strains relying on PthXo2 (ref. 12). Additional naturally occurring recessive EBE polymorphisms that confer resistance to strains carrying PthXo2, and the overlapping EBEs for PthXo3, TalF and AvrXa7 have subsequently been identified in the promoters of SWEET13 and SWEET14, respectively, in germplasm collections 17,18. Rice susceptibility genes are good targets for genome editing for disease resistance. TALe-mediated susceptibility is particularly modifiable. For instance, transcription-activator-like effector nuclease (TALEN)-directed mutations in SWEET14 created lines resistant to strains carrying PthXo3/Avr...
To circumvent the paucity of nitrogen sources in the soil legume plants establish a symbiotic interaction with nitrogen-fixing soil bacteria called rhizobia. During symbiosis, the plants form root organs called nodules, where bacteria are housed intracellularly and become active nitrogen fixers known as bacteroids. Depending on their host plant, bacteroids can adopt different morphotypes, being either unmodified (U), elongated (E) or spherical (S). E- and S-type bacteroids undergo a terminal differentiation leading to irreversible morphological changes and DNA endoreduplication. Previous studies suggest that differentiated bacteroids display an increased symbiotic efficiency (E > U and S > U). In this study, we used a combination of Aeschynomene species inducing E- or S-type bacteroids in symbiosis with Bradyrhizobium sp. ORS285 to show that S-type bacteroids present a better symbiotic efficiency than E-type bacteroids. We performed a transcriptomic analysis on E- and S-type bacteroids formed by Aeschynomene afraspera and Aeschynomene indica nodules and identified the bacterial functions activated in bacteroids and specific to each bacteroid type. Extending the expression analysis in E- and S-type bacteroids in other Aeschynomene species by qRT-PCR on selected genes from the transcriptome analysis narrowed down the set of bacteroid morphotype-specific genes. Functional analysis of a selected subset of 31 bacteroid-induced or morphotype-specific genes revealed no symbiotic phenotypes in the mutants. This highlights the robustness of the symbiotic program but could also indicate that the bacterial response to the plant environment is partially anticipatory or even maladaptive. Our analysis confirms the correlation between differentiation and efficiency of the bacteroids and provides a framework for the identification of bacterial functions that affect the efficiency of bacteroids.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.