Voltage-dependent K؉ channels (VDPC) are expressed in most mammalian cells and involved in the proliferation and activation of lymphocytes. However, the role of VDPC in macrophage responses is not well established. This study was undertaken to characterize VDPC in macrophages and determine their physiological role during proliferation and activation. Macrophages proliferate until an endotoxic shock halts cell growth and they become activated. By inducing a schedule that is similar to the physiological pattern, we have identified the VDPC in non-transformed bone marrow-derived macrophages and studied their regulation. Patch clamp studies demonstrated that cells expressed outward delayed and inwardly rectifying K ؉ currents. Pharmacological data, mRNA, and protein analysis suggest that these currents were mainly mediated by Kv1.3 and Kir2.1 channels. Macrophage colony-stimulating factor-dependent proliferation induced both channels. Lipopolysaccharide (LPS)-induced activation differentially regulated VDPC expression. While Kv1.3 was further induced, Kir2.1 was down-regulated. TNF-␣ mimicked LPS effects, and studies with TNF-␣ receptor I/II double knockout mice demonstrated that LPS regulation mediates such expression by TNF-␣-dependent and -independent mechanisms. This modulation was dependent on mRNA and protein synthesis. In addition, bone marrow-derived macrophages expressed Kv1.5 mRNA with no apparent regulation. VDPC activities seem to play a critical role during proliferation and activation because not only cell growth, but also inducible nitric-oxide synthase expression were inhibited by blocking their activities. Taken together, our results demonstrate that the differential regulation of VDPC is crucial in intracellular signals determining the specific macrophage response.
Incubation of bone marrow macrophages with lipopolysaccharide (LPS) or interferon gamma (IFN gamma) blocks macrophage proliferation. LPS treatment or M-CSF withdrawal arrests the cell cycle at early G1 and induces apoptosis. Treatment of macrophages with IFN gamma stops the cell cycle later, at the G1/S boundary, induces p21Waf1, and does not induce apoptosis. Moreover, pretreatment of macrophages with IFN gamma protects from apoptosis induced by several stimuli. Inhibition of p21Waf1 with antisense oligonucleotides or using KO mice shows that the induction of p21Waf1 by IFN gamma mediates this protection. Thus, IFN gamma makes macrophages unresponsive to apoptotic stimuli by inducing p21Waf1 and arresting the cell cycle at the G1/S boundary. Therefore, the cells of the innate immune system could only survive while they were functionally active.
Arginine is processed by macrophages in response to the cytokines to which these cells are exposed. Th1-type cytokines induce NO synthase 2, which metabolizes arginine into nitrites, while the Th2-type cytokines produce arginase, which converts arginine into polyamines and proline. Activation of bone marrow-derived macrophages by these two types of cytokines increases l-arginine transport only through the y+ system. Analysis of the expression of the genes involved in this system showed that Slc7A1, encoding cationic amino acid transporters (CAT)1, is constitutively expressed and is not modified by activating agents, while Slc7A2, encoding CAT2, is induced during both classical and alternative activation. Macrophages from Slc7A2 knockout mice showed a decrease in l-arginine transport in response to the two kinds of cytokines. However, while NO synthase 2 and arginase expression were unmodified in these cells, the catabolism of arginine was impaired by both pathways, producing smaller amounts of nitrites and also of polyamines and proline. In addition, the induction of Slc7A2 expression was independent of the arginine available and of the enzymes that metabolize it. In conclusion, the increased arginine transport mediated by activators is strongly regulated by CAT2 expression, which could limit the function of macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.