We performed a second-generation genome wide association study of 4,533 celiac disease cases and 10,750 controls. We genotyped 113 selected SNPs with PGWAS<10−4, and 18 SNPs from 14 known loci, in a further 4,918 cases and 5,684 controls. Variants from 13 new regions reached genome wide significance (Pcombined<5×10−8), most contain immune function genes (BACH2, CCR4, CD80, CIITA/SOCS1/CLEC16A, ICOSLG, ZMIZ1) with ETS1, RUNX3, THEMIS and TNFRSF14 playing key roles in thymic T cell selection. A further 13 regions had suggestive association evidence. In an expression quantitative trait meta-analysis of 1,469 whole blood samples, 20 of 38 (52.6%) tested loci had celiac risk variants correlated (P<0.0028, FDR 5%) with cis gene expression.
We densely genotyped, using 1000 Genomes Project pilot CEU and additional re-sequencing study variants, 183 reported immune-mediated disease non-HLA risk loci in 12,041 celiac disease cases and 12,228 controls. We identified 13 new celiac disease risk loci at genome wide significance, bringing the total number of known loci (including HLA) to 40. Multiple independent association signals are found at over a third of these loci, attributable to a combination of common, low frequency, and rare genetic variants. In comparison with previously available data such as HapMap3, our dense genotyping in a large sample size provided increased resolution of the pattern of linkage disequilibrium, and suggested localization of many signals to finer scale regions. In particular, 29 of 54 fine-mapped signals appeared localized to specific single genes - and in some instances to gene regulatory elements. We define a complex genetic architecture of risk regions, and refine risk signals, providing a next step towards elucidating causal disease mechanisms.
This study investigates the role of p38 MAPK, inducible nitric oxide synthase (iNOS), and the intrinsic pathway signaling in male germ cell death in rats after hormonal deprivation by a potent GnRH antagonist treatment. Germ cell apoptosis, involving exclusively middle (VII-VIII) stages, was activated by d 5 after GnRH antagonist treatment. Initiation of germ cell apoptosis was preceded by p38 MAPK activation and induction of iNOS. p38 MAPK activation and iNOS induction were further accompanied by a marked perturbation of the BAX/BCL-2 rheostat, cytochrome c, and DIABLO release from mitochondria, caspase activation, and poly(ADP-ribose) polymerase cleavage. Concomitant administration of aminoguanidine, a selective iNOS inhibitor, significantly prevented hormone deprivation-induced germ cell apoptosis. Inhibitors of iNOS or p38 MAPK were also effective in preventing human male germ cell apoptosis induced by hormone-free culture conditions. Together, these results establish a new signal transduction pathway involving p38 MAPK and iNOS that, through activation of the intrinsic pathway signaling, promotes male germ cell death in response to a lack of hormonal stimulation across species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.