Cannabinoids, the active components of marijuana and their derivatives, induce tumor regression in rodents (8). However, the mechanism of cannabinoid antitumoral action in vivo is as yet unknown. Here we show that local administration of a nonpsychoactive cannabinoid to mice inhibits angiogenesis of malignant gliomas as determined by immunohistochemical analyses and vascular permeability assays. In vitro and in vivo experiments show that at least two mechanisms may be involved in this cannabinoid action: the direct inhibition of vascular endothelial cell migration and survival as well as the decrease of the expression of proangiogenic factors (vascular endothelial growth factor and angiopoietin-2) and matrix metalloproteinase-2 in the tumors. Inhibition of tumor angiogenesis may allow new strategies for the design of cannabinoid-based antitumoral therapies.
Nonmelanoma skin cancer is one of the most common malignancies in humans. Different therapeutic strategies for the treatment of these tumors are currently being investigated. Given the growth-inhibiting effects of cannabinoids on gliomas and the wide tissue distribution of the two subtypes of cannabinoid receptors (CB1 and CB2), we studied the potential utility of these compounds in anti–skin tumor therapy. Here we show that the CB1 and the CB2 receptor are expressed in normal skin and skin tumors of mice and humans. In cell culture experiments pharmacological activation of cannabinoid receptors induced the apoptotic death of tumorigenic epidermal cells, whereas the viability of nontransformed epidermal cells remained unaffected. Local administration of the mixed CB1/CB2 agonist WIN-55,212-2 or the selective CB2 agonist JWH-133 induced a considerable growth inhibition of malignant tumors generated by inoculation of epidermal tumor cells into nude mice. Cannabinoid-treated tumors showed an increased number of apoptotic cells. This was accompanied by impairment of tumor vascularization, as determined by altered blood vessel morphology and decreased expression of proangiogenic factors (VEGF, placental growth factor, and angiopoietin 2). Abrogation of EGF-R function was also observed in cannabinoid-treated tumors. These results support a new therapeutic approach for the treatment of skin tumors
Keratins K8 and K18 are the major components of the intermediate filament cytoskeleton of simple epithelia. Increased levels of these keratins have been associated with invasive growth and progression to malignancy in different types of human and murine epithelial tumors (including skin tumors), and even in tumors from nonepithelial origin. However, it has not yet clarified whether K8/K18 expression in tumors is cause or consequence of malignancy. Given the increasing incidence of epidermal cancer in humans (40% of all tumors diagnosed), we generated a mouse model to examine the role of simple epithelium keratins in the establishment and progression of human skin cancer. Transgenic mice expressing human K8 in the epidermis showed severe epidermal and hair follicle dysplasia with concomitant alteration in epidermal differentiation markers. The severity of the skin phenotype of these transgenic mice increases with age, leading to areas of preneoplastic transformation. Skin carcinogenesis assays showed a dramatic increase in the progression of papillomas toward malignancy in transgenic animals. These results support the idea that K8 alters the epidermal cell differentiation, favors the neoplastic transformation of cells, and is ultimately responsible of the invasive behavior of transformed epidermal cells leading of conversion of benign to malignant tumors.
Squamous cell carcinomas (SCCs) of the skin display different clinical features according to their epithelial differentiation grade and histological variant. Understanding the causes of these divergences might increase the curability of SCCs. Therefore, it is important to study the mechanisms of differentiation in keratinocytes. IKK (IkappaB kinase) alpha is an important protein for epidermal morphogenesis, although the pathways through which it exerts its function are unknown and controversy exists about its role in cancer development. We show that enhanced IKKalpha expression increases both early and terminal differentiation of human keratinocytes through an E-cadherin-dependent mechanism. Increased expression of IKKalpha in mouse tumorigenic epidermal cells leads to changes in the differentiation pattern of the resulting SCCs, originating a distinct histological variant that resembles the human acantholytic SCC (ASCC) variant. Although human ASCCs have an aggressive clinical course and high risk of metastasis, nothing is known about their etiology. We show that human ASCCs, as observed in the counterpart IKKalpha murine tumors, express high levels of both IKKalpha and E-cadherin, with absence of keratins K1 and K10, usually co-expressed with IKKalpha and E-cadherin. The tight correlation between the properties of both murine and human ASCC variants strongly suggests that IKKalpha is responsible for the development of this human SCC variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.