Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide–templated crystallization strategy is developed for printing formamidinium (FA)–cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•N-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die–printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively.
We demonstrate a self-transformation approach for the synthesis of ordered mesoporous silica hollow spheres with radially oriented mesochannels. The method is simple and facile, in which mesostructured silica spheres synthesized in a Stober solution can spontaneously transform to hollow structure when they are incubated with water. The formation of the hollow structure does not require any sacrificial templates, emulsion droplets, or surface protective agents. The obtained mesoporous silica hollow spheres possess controllable diameter, tunable shell thickness, high specific surface area, and uniform mesopore. Transmission electron microscopy (TEM) observations show that the formation of the hollow spheres undergoes a selective etching process in the inner section. 29 Si NMR spectra and detailed reactions demonstrate that the solid-to-hollow transformation of the Stober silica spheres in water is attributed to the difference in the degree of condensation of silica between their outer layer and inner section. Cytotoxicity and histological assays confirm that the obtained mesoporous silica hollow spheres possess good biocompatibility. Besides, the capability of the hollow spheres as contrast agents for untrasound imaging is conducted in vitro. Moreover, yolk−shell microspheres with a Fe 3 O 4 @ nSiO 2 core and a mesoporous silica shell are successfully prepared based on the facile self-transformation strategy, which provides a general method to create various yolk−shell structured multifunctional composites for different applications.
Mixed-halide perovskite has an irreplaceable role as wide-bandgap absorber in multi-junction tandem solar cells. However, large open-circuit voltage (V oc ) loss due to non-uniform halide distribution and compromised device stability due to photo-induced halide segregation has significantly limited the applications. Here, it is introduced 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (ABF) with multifunctional groups (sulfonyl, ammonium, and fluoride) to the mixed-halide precursor to demonstrate a downward homogenized crystallization strategy for suppressing the initial vertical halide phase separation during perovskite crystallization and reducing V oc loss. Furthermore, fluoride with strong electronegativity effectively fixes anions and cations, while sulfonyl and ammonium are used to passivate positive charged (halide vacancies) and negative charged (FA/MA vacancies) defects, respectively, thereby reducing the generation of ion vacancies that lead to subsequent photo-induced halide segregation. As a result, the 1.63 and 1.68 eV wide-bandgap perovskite solar cells with inverted structures exhibit the champion power conversion efficiency (PCE) of 21.76% and 20.11% with V oc of 1.18 and 1.21 V, respectively. Most importantly, the optimized devices without encapsulation preserve 86% of initial efficiency after 240 h of continuous illumination under AM 1.5G, showing excellent light stability. Thus, the homogenized crystallization strategy provides highly efficient performance and stability for future tandem solar cell applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.