An extra-large subsurface anticyclonic eddy (SAE) with horizontal scale of 470 km was detected in the northwestern Pacific subtropical gyre by in situ measurements in October 2014. The SAE exhibited a lens-shaped vertical structure with shoaling of the seasonal thermocline and deepening of the main thermocline. Consequently, the water in the eddy core was colder above 200 m and warmer below 200 m than the surrounding waters with maximum temperature anomalies of -1.2°C and 3.5°C located at ~100 m and ~450 m depths, respectively. The central water mass of the SAE was characterized as low potential vorticity water, i.e., the north Pacific Subtropical Mode Water (STMW). Swirl velocity of the SAE was directly observed by ship-mounted ADCP (Acoustic Doppler Current Profilers). The maximum azimuthal velocity reached 0.35 ms -1 near a 110 km radius at ~ 200 m depth, which was comparable with the maximum velocity of the northward Kuroshio east of Taiwan at the same depth. Threedimensional structure and evolutionary process of the SAE were also presented using Argo float profile data as well as the satellite altimeter data. The results indicated that the SAE was generated in the region of the STMW in February, then propagated westward over 1500 km at a mean speed of ~0.06 ms -1 and finally disappeared east of Taiwan in December, transporting ~0.5 Sv (Sv=10 6 m 3 s -1 ) STMW..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.