The addition of organic amendments contributes substantially to improvements in soil quality and prevents soil degradation. However, very little is known about the responses of dominant fungal strains to organic fertilizers or their functions in the nutrient transformations and crop growth promotion. Here, soils and maize roots were collected from a 35‐year field experiment treated with composted soybean cake. The fungal communities in the bulk soil, rhizosphere, and endosphere were analyzed by deep amplicon sequencing of the internal transcribed spacer region gene. Overall, the soil fungal community was dominated by the phyla Ascomycota, Basidiomycota, and Zygomycota. Organic amendments changed the fungal community composition, with significant increase in the relative abundances of Mortierella, Fusarium, and Chaetomiceae in the bulk and rhizosphere soils. Mortierella elongata was the most successful fungi responding to organic inputs as seen by the surge in abundance. Genome characteristics of M. elongata indicated that M. elongata possessed the functional capacity to degrade a range of toxic organics, and thereby improve soil health. Furthermore, M. elongata's capacity to compose recalcitrant substances that can contribute to pools of long‐term stable SOM was confirmed. These findings suggest that M. elongata may be mechanistic in sequestering C in soil. Inoculations of M. elongata into soil significantly increased the levels of plant indole acetic acid and plant biomass. Soil phosphatase and β‐glucosidase activities were also improved. Our study suggests that M. elongata can defend against soil degradation, improve soil health, and stimulate production of plant growth hormones.
Light plays a vital role on the growth and development of plant. On the base of white light with high color rendering to the benefit of human survival and life, we proposed to improve “color rendering” of LED lighting for accelerating the growth of lettuce. Seven spectral LED lights were adopted to irradiate the lettuces under 150 μmol·m−2·s−1 for a 16 hd−1 photoperiod. The leaf area and number profiles, plant biomass, and photosynthetic rate under the as-prepared LED light treatments were investigated. We let the absorption spectrum of fresh leaf be the emission spectrum of ideal light and then evaluate the “color rendering” of as-prepared LED lights by the Pearson product-moment correlation coefficient and CIE chromaticity coordinates. Under the irradiation of red-yellow-blue light with high correlation coefficient of 0.587, the dry weights and leaf growth rate are 2–3 times as high as the sharp red-blue light. The optimized LED light for lettuce growth can be presumed to be limited to the angle (about 75°) between the vectors passed through the ideal light in the CIE chromaticity coordinates. These findings open up a new idea to assess and find the optimized LED light for plant growth.
Potassium (K+) deficiency as a common abiotic stress can inhibit the growth of plants and thus reduce the agricultural yields. Nevertheless, scarcely any development has been promoted in wheat transcriptional changes under K+ deficiency. Here we investigated root transcriptional changes in two wheat genotypes, namely, low-K+ tolerant “Tongzhou916” and low-K+ susceptible “Shiluan02-1”. There were totally 2713 and 2485 probe sets displayed expression changes more than 1.5-fold in Tongzhou916 and Shiluan02-1, respectively. Low-K+ responsive genes mainly belonged to the categories as follows: metabolic process, cation binding, transferase activity, ion transporters and so forth. We made a comparison of gene expression differences between the two wheat genotypes. There were 1321 and 1177 up-regulated genes in Tongzhou916 and Shiluan02-1, respectively. This result indicated that more genes took part in acclimating to low-K+ stress in Tongzhou916. In addition, there were more genes associated with jasmonic acid, defense response and potassium transporter up-regulated in Tongzhou916. Moreover, totally 19 genes encoding vacuolar H+-pyrophosphatase, ethylene-related, auxin response, anatomical structure development and nutrient reservoir were uniquely up-regulated in Tongzhou916. For their important role in root architecture, K+ uptake and nutrient storage, unique genes above may make a great contribution to the strong low-K+ tolerance in Tongzhou916.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.