Chemically induced decellularisation by Triton or Trypsine resulted in changes in the extracellular matrix constitution, which could lead to problems in valve functionality and cell growth and migration. Seeded endothelial cells were capable of synthesising extracellular matrix components lost by cell extraction. Further studies on tissue engineering should focus more on the effect of chemically induced cell extraction on the extracellular matrix of the remaining scaffold and the in vitro or in vivo replenishment of lost compounds.
Abstract-The importance of vascular endothelial growth factor-A (VEGF) and subsequent Notch signaling in cardiac outflow tract development is generally recognized. Although genetic heterogeneity and mutations of these genes in both humans and mouse models relate to a high susceptibility to develop outflow tract malformations such as tetralogy of Fallot and peripheral pulmonary stenosis, no etiology has been proposed so far.
Spatial-temporal regulation of bone morphogenetic protein (BMP) and Wnt activity is essential for normal cardiovascular development, and altered activity of these growth factors causes maldevelopment of the cardiac outflow tract and great arteries. In the present study, we show that SOST, a Dan family member reported to antagonize BMP and Wnt activity, is expressed within the medial vessel wall of the great arteries containing smooth muscle cells. The ascending aorta, aortic arch, brachiocephalic artery, common carotids, and pulmonary trunk were all associated with SOST expressing smooth muscle cells, while the heart itself, including the valves, and more distal arteries, that is, pulmonary arteries, subclavian arteries, and descending aorta, were negative. SOST was expressed from embryonic day 15.5 up to the neonatal period. SOST expression, however, did not correspond with inhibition of Smad-dependent BMP activity or -catenin-dependent Wnt activity in the great arteries. Activity of both signaling pathways was already down-regulated before induction of SOST expression. Developmental Dynamics 236:606 -612, 2007.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.