The Sloan Digital Sky Survey (SDSS) will provide the data to support detailed investigations of the distribution of luminous and non- luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands to a depth of g' about 23 magnitudes, and a spectroscopic survey of the approximately one million brightest galaxies and 10^5 brightest quasars found in the photometric object catalog produced by the imaging survey. This paper summarizes the observational parameters and data products of the SDSS, and serves as an introduction to extensive technical on-line documentation.Comment: 9 pages, 7 figures, AAS Latex. To appear in AJ, Sept 200
Using the photometric parallax method we estimate the distances to ∼48 million stars detected by the Sloan Digital Sky Survey (SDSS) and map their three-dimensional number density distribution in the Galaxy. The currently available data sample the distance range from 100 pc to 20 kpc and cover 6,500 deg 2 of sky, mostly at high galactic latitudes (|b| > 25). These stellar number density maps allow an investigation of the Galactic structure with no a priori assumptions about the functional form of its components. The data show strong evidence for a Galaxy consisting of an oblate halo, a disk component, and a number of localized overdensities. The number density distribution of stars as traced by M dwarfs in the Solar neighborhood (D < 2 kpc) is well fit by two exponential disks (the thin and thick disk) with scale heights and lengths, bias-corrected for an assumed 35% binary fraction, of H 1 = 300 pc and L 1 = 2600 pc, and H 2 = 900 pc and L 2 = 3600 pc, and local thick-tothin disk density normalization ρ thick (R ⊙ )/ρ thin (R ⊙ ) = 12%. We use the stars near main-sequence turnoff to measure the shape of the Galactic halo. We find a strong preference for oblate halo models, with best-fit axis ratio c/a = 0.64, ρ H ∝ r −2.8 power-law profile, and the local halo-to-thin disk normalization of 0.5%. Based on a series of Monte-Carlo simulations, we estimate the errors of derived model parameters not to be larger than ∼ 20% for the disk scales and ∼ 10% for the density normalization, with largest contributions to error coming from the uncertainty in calibration of the photometric parallax relation and poorly constrained binary fraction. While generally consistent with the above model, the measured density distribution shows a number of statistically significant localized deviations. In addition to known features, such as the Monoceros stream, we detect two overdensities in the thick disk region at cylindrical galactocentric radii and heights (R, Z) ∼ (6.5, 1.5) kpc and (R, Z) ∼ (9.5, 0.8) kpc, and a remarkable density enhancement in the halo covering over a thousand square degrees of sky towards the constellation of Virgo, at distances of ∼6-20 kpc. Compared to counts in a region symmetric with respect to the l = 0 • line and with the same Galactic latitude, the Virgo overdensity is responsible for a factor of 2 number density excess, and may be a nearby tidal stream or a low-surface brightness dwarf galaxy merging with the Milky Way. The u − g color distribution of stars associated with it implies metallicity lower than that of thick disk stars, and consistent with the halo metallicity distribution. After removal of the resolved overdensities, the remaining data are consistent with a smooth density distribution; we detect no evidence of further unresolved clumpy substructure at scales ranging from ∼ 50 pc in the disk, to ∼ 1 − 2 kpc in the halo.
We measure cosmological parameters using the three-dimensional power spectrum P (k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a "vanilla" flat adiabatic ΛCDM model without tilt (ns = 1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1σ constraints on the Hubble parameter from h ≈ 0.74−0.03 , on the matter density from Ωm ≈ 0.25 ± 0.10 to Ωm ≈ 0.30 ± 0.04 (1σ) and on neutrino masses from < 11 eV to < 0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0 ≈ 16.3 +2.3 −1.8 Gyr to t0 ≈ 14.1Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.
The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey that will eventually cover approximately one-quarter of the celestial sphere and collect spectra of %10 6 galaxies, 100,000 quasars, 30,000 stars, and 30,000 serendipity targets. In 2001 June, the SDSS released to the general astronomical community its early data release, roughly 462 deg 2 of imaging data including almost 14 million detected objects and 54,008 follow-up spectra. The imaging data were collected in drift-scan mode in five bandpasses (u, g, r, i, and z); our 95% completeness limits for stars are 22.0, 22.2, 22.2, 21.3, and 20.5, respectively. The photometric calibration is reproducible to 5%, 3%, 3%, 3%, and 5%, respectively. The spectra are flux-and wavelength-calibrated, with 4096 pixels from 3800 to 9200 Å at R % 1800. We present the means by which these data are distributed to the astronomical community, descriptions of the hardware used to obtain the data, the software used for processing the data, the measured quantities for each observed object, and an overview of the properties of this data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.