Identifying a source of cells with the capacity to generate oligodendrocytes in the adult CNS would help in the development of strategies to promote remyelination. In the present study, we examined the ability of the precursor cells of the adult mouse subventricular zone (SVZ) to differentiate into remyelinating oligodendrocytes. After lysolecithin-induced demyelination of the corpus callosum, progenitors of the rostral SVZ (SVZa) and the rostral migratory pathway (RMS), expressing the embryonic polysialylated form of the neural cell adhesion molecule (PSA-NCAM), increased progressively with a maximal expansion occurring after 2 weeks. This observation correlated with an increase in the proliferation activity of the neural progenitors located in the SVZa and RMS. Moreover, polysialic acid (PSA)-NCAM-immunoreactive cells arizing from the SVZa were detected in the lesioned corpus callosum and within the lesion. Tracing of the constitutively cycling cells of the adult SVZ and RMS with 3H-thymidine labelling showed their migration toward the lesion and their differentiation into oligodendrocytes and astrocytes but not neurons. These data indicate that, in addition to the resident population of quiescent oligodendrocyte progenitors of the adult CNS, neural precursors from the adult SVZ constitute a source of oligodendrocytes for myelin repair.
Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4 OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.