Direct printing of functional inks is critical for applications in diverse areas including electrochemical energy storage, smart electronics and healthcare. However, the available printable ink formulations are far from ideal. Either surfactants/additives are typically involved or the ink concentration is low, which add complexity to the manufacturing and compromises the printing resolution. Here, we demonstrate two types of two-dimensional titanium carbide (Ti 3 C 2 T x ) MXene inks, aqueous and organic in the absence of any additive or binary-solvent systems, for extrusion printing and inkjet printing, respectively. We show examples of all-MXene-printed structures, such as micro-supercapacitors, conductive tracks and ohmic resistors on untreated plastic and paper substrates, with high printing resolution and spatial uniformity. The volumetric capacitance and energy density of the all-MXene-printed micro-supercapacitors are orders of magnitude greater than existing inkjet/extrusion-printed active materials. The versatile direct-ink-printing technique highlights the promise of additive-free MXene inks for scalable fabrication of easy-to-integrate components of printable electronics.
In this work, we present a comprehensive theoretical and experimental study of quantum confinement in layered platinum diselenide (PtSe 2 ) films as a function of film thickness. Our electrical measurements, in combination with density functional theory calculations, show distinct layer-dependent semimetal-to-semiconductor evolution in PtSe 2 films, and highlight the importance of including van der Waals interactions, Green's function calibration, and screened Coulomb interactions in the determination of the thickness-dependent PtSe 2 energy gap. Large-area PtSe 2 films of varying thickness (2.5-6.5 nm) were formed at 400°C by thermally assisted conversion of ultra-thin platinum films on Si/SiO 2 substrates. The PtSe 2 films exhibit p-type semiconducting behavior with hole mobility values up to 13 cm 2 /V·s. Metal-oxide-semiconductor field-effect transistors have been fabricated using the grown PtSe 2 films and a gate field-controlled switching performance with an I ON /I OFF ratio of >230 has been measured at room temperature for a 2.5-3 nm PtSe 2 film, while the ratio drops to <2 for 5-6.5 nm-thick PtSe 2 films, consistent with a semiconductingto-semimetallic transition with increasing PtSe 2 film thickness. These experimental observations indicate that the low-temperature growth of semimetallic or semiconducting PtSe 2 could be integrated into the back-end-of-line of a silicon complementary metaloxide-semiconductor process.npj 2D Materials and Applications (2019) 3:33 ; https://doi.
Platinum Diselenide (PtSe 2 ) is an exciting new member of the two-dimensional (2D) transition metal dichalcogenide (TMD) family. It has a semimetal to semiconductor transition when approaching monolayer thickness and has already shown significant potential for use in device applications. Notably, PtSe 2 can be grown at low temperature making it potentially suitable for industrial usage. Here, we address thickness dependent transport properties and investigate electrical contacts to PtSe 2 , a crucial and universal element of TMD-based electronic devices. PtSe 2 films have been synthesized at various thicknesses and structured to allow contact engineering and the accurate extraction of electrical properties. Contact resistivity and sheet resistance extracted from transmission line method (TLM) measurements are compared for different contact metals and different PtSe 2 film thicknesses. Furthermore, the transition from semimetal to semiconductor in PtSe 2 has been indirectly verified by electrical characterization in field-effect devices. Finally, the influence of edge contacts at the metal -PtSe 2 interface has been studied by nanostructuring the contact area using electron beam lithography. By increasing the edge contact length, the contact resistivity was improved by up to 70 % compared to devices with conventional top contacts. The results presented here represent crucial steps towards realizing high-performance nanoelectronic devices based on group-10 TMDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.