BackgroundAlzheimer’s disease (AD) is the most prevalent form of age-related dementia, and its effect on society increases exponentially as the population ages. Accumulating evidence suggests that neuroinflammation, mediated by the brain’s innate immune system, contributes to AD neuropathology and exacerbates the course of the disease. However, there is no experimental evidence for a causal link between systemic inflammation or neuroinflammation and the onset of the disease.MethodsThe viral mimic, polyriboinosinic-polyribocytidilic acid (PolyI:C) was used to stimulate the immune system of experimental animals. Wild-type (WT) and transgenic mice were exposed to this cytokine inducer prenatally (gestation day (GD)17) and/or in adulthood. Behavioral, immunological, immunohistochemical, and biochemical analyses of AD-associated neuropathologic changes were performed during aging.ResultsWe found that a systemic immune challenge during late gestation predisposes WT mice to develop AD-like neuropathology during the course of aging. They display chronic elevation of inflammatory cytokines, an increase in the levels of hippocampal amyloid precursor protein (APP) and its proteolytic fragments, altered Tau phosphorylation, and mis-sorting to somatodendritic compartments, and significant impairments in working memory in old age. If this prenatal infection is followed by a second immune challenge in adulthood, the phenotype is strongly exacerbated, and mimics AD-like neuropathologic changes. These include deposition of APP and its proteolytic fragments, along with Tau aggregation, microglia activation and reactive gliosis. Whereas Aβ peptides were not significantly enriched in extracellular deposits of double immune-challenged WT mice at 15 months, they dramatically increased in age-matched immune-challenged transgenic AD mice, precisely around the inflammation-induced accumulations of APP and its proteolytic fragments, in striking similarity to the post-mortem findings in human patients with AD.ConclusionChronic inflammatory conditions induce age-associated development of an AD-like phenotype in WT mice, including the induction of APP accumulations, which represent a seed for deposition of aggregation-prone peptides. The PolyI:C mouse model therefore provides a unique tool to investigate the molecular mechanisms underlying the earliest pathophysiological changes preceding fibrillary Aβ plaque deposition and neurofibrillary tangle formations in a physiological context of aging. Based on the similarity between the changes in immune-challenged mice and the development of AD in humans, we suggest that systemic infections represent a major risk factor for the development of AD.
In this study microglial cells isolated from brain cell cultures of newborn mice were characterized and investigated for morphology, their responses to growth factors and their functional properties. The microglial cells were phagocytic, contained nonspecific esterase activity and expressed Fc (IgG1/2b) and type-3 complement receptors. Scanning electron microscopy revealed that in analogy to brain tissue two types of microglial cells are present in the cultures: the ameboid and the ramified type which both display similar appearance by transmission electron microscopy. Interleukin 3 and the granulocyte-macrophage colony-stimulating factor were potent growth factors for the cultured microglial cells. The cells were negative for class II antigens (Ia) of the major histocompatibility antigen complex. However, upon treatment with interferon-gamma (IFN-gamma) microglial cells became Ia+ and functioned as antigen-presenting cells when tested on ovalbumin-specific Ia-restricted helper T cells. Furthermore, microglial cells exposed to IFN-gamma and endotoxin developed tumor cell cytotoxicity and produced tumor necrosis factor alpha. Taken together, microglial cells share the characteristics of cells of the macrophage lineage.
Postsynaptic scaffolding proteins ensure efficient neurotransmission by anchoring receptors and signaling molecules in synapsespecific subcellular domains. In turn, posttranslational modifications of scaffolding proteins contribute to synaptic plasticity by remodeling the postsynaptic apparatus. Though these mechanisms are operant in glutamatergic synapses, little is known about regulation of GABAergic synapses, which mediate inhibitory transmission in the CNS. Here, we focused on gephyrin, the main scaffolding protein of GABAergic synapses. We identify a unique phosphorylation site in gephyrin, Ser270, targeted by glycogen synthase kinase 3β (GSK3β) to modulate GABAergic transmission. Abolishing Ser270 phosphorylation increased the density of gephyrin clusters and the frequency of miniature GABAergic postsynaptic currents in cultured hippocampal neurons. Enhanced, phosphorylation-dependent gephyrin clustering was also induced in vitro and in vivo with lithium chloride. Lithium is a GSK3β inhibitor used therapeutically as mood-stabilizing drug, which underscores the relevance of this posttranslational modification for synaptic plasticity. Conversely, we show that gephyrin availability for postsynaptic clustering is limited by Ca 2+ -dependent gephyrin cleavage by the cysteine protease calpain-1. Together, these findings identify gephyrin as synaptogenic molecule regulating GABAergic synaptic plasticity, likely contributing to the therapeutic action of lithium.GABA A receptors | lithium chloride | postsynaptic density | PSD95 | homeostatic plasticity P lasticity of chemical synapses endows neuronal networks with the capacity to store information by adjusting their functional connectivity. Hence, understanding the molecular underpinnings of synaptic plasticity is a fundamental quest of neuroscience. These mechanisms have been characterized most extensively at glutamatergic synapses, in which a core scaffolding protein, PSD95, forms a signaling complex assembled by proteins interacting via specific PDZ domains (1). In contrast, little is known about signals regulating GABAergic synapses, despite their ubiquitous presence throughout the CNS and their key role in the control of network activity and synchronization. In particular, the postsynaptic density (PSD) of GABAergic synapses, localized primarily on neuronal somata and dendritic shafts, remains ill characterized. Gephyrin, a 93-kDa cytoplasmic polypeptide, has emerged as a multifunctional protein mediating postsynaptic aggregation of GABA A receptors (GABA A R) and glycine receptors by forming a scaffold anchored to the cytoskeleton (2-4). However, the mechanisms of gephyrin and GABA A R clustering are poorly understood, although evidence for direct interaction between gephyrin and GABA A R is slowly emerging (5, 6). Though gephyrin is a phosphoprotein (7,8), the relevance of gephyrin phosphorylation for regulating GABAergic transmission has not been addressed.In the present work, we focused on gephyrin posttranslational modification for regulating its postsyna...
The NMDA receptor is thought to play a central role in some forms of neuronal plasticity, including the induction of long-term potentiation. NMDA receptor hypofunction can result in mnemonic impairment and has been implicated in the cognitive symptoms of schizophrenia. The activity of NMDA receptors is controlled by its endogenous coagonist glycine, and a local elevation of glycine levels is expected to enhance NMDA receptor function. Here, we achieved this by the generation of a novel mouse line (CamKII␣Cre;Glyt1tm1.2fl/ fl) with a neuron and forebrain selective disruption of glycine transporter 1 (GlyT1). The mutation led to a significant reduction of GlyT1 and a corresponding reduction of glycine reuptake in forebrain samples, without affecting NMDA receptor expression. NMDA (but not AMPA) receptor-evoked EPSCs recorded in hippocampal slices of mutant mice were 2.5 times of those recorded in littermate controls, suggesting that neuronal GlyT1 normally assumes a specific role in the regulation of NMDA receptor responses. Concomitantly, the mutants were less responsive to phencyclidine than controls. The mutation enhanced aversive Pavlovian conditioning without affecting spontaneous anxiety-like behavior in the elevated plus maze and augmented a form of attentional learning called latent inhibition in three different experimental paradigms: conditioned freezing, conditioned active avoidance, conditioned taste aversion. The CamKII␣Cre; Glyt1tm1.2fl/fl mouse model thus suggests that augmentation of forebrain neuronal glycine transmission is promnesic and may also offer an effective therapeutic intervention against the cognitive and attentional impairments characteristic of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.