IMPORTANCE Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor nervous system. Clinical studies have demonstrated cortical and spinal motor neuron hyperexcitability using transcranial magnetic stimulation and threshold tracking nerve conduction studies, respectively, although metrics of excitability have not been used as pharmacodynamic biomarkers in multi-site clinical trials. OBJECTIVE To ascertain whether ezogabine decreases cortical and spinal motor neuron excitability in ALS. DESIGN, SETTING, AND PARTICIPANTSThis double-blind, placebo-controlled phase 2 randomized clinical trial sought consent from eligible participants from November 3, 2015, to November 9, 2017, and was conducted at 12 US sites within the Northeast ALS Consortium. Participants were randomized in equal numbers to a higher or lower dose of ezogabine or to an identical matched placebo, and they completed in-person visits at screening, baseline, week 6, and week 8 for clinical assessment and neurophysiological measurements. INTERVENTIONS Participants were randomized to receive 600 mg/d or 900 mg/d of ezogabine or a matched placebo for 10 weeks. MAIN OUTCOMES AND MEASURESThe primary outcome was change in short-interval intracortical inhibition (SICI; SICI −1 was used in analysis to reflect stronger inhibition from an increase in amplitude) from pretreatment mean at screening and baseline to the full-dose treatment mean at weeks 6 and 8. The secondary outcomes included levels of cortical motor neuron excitability (including resting motor threshold) measured by transcranial magnetic stimulation and spinal motor neuron excitability (including strength-duration time constant) measured by threshold tracking nerve conduction studies.RESULTS A total of 65 participants were randomized to placebo (23), 600 mg/d of ezogabine (23), and 900 mg/d of ezogabine (19 participants); 45 were men (69.2%) and the mean (SD) age was 58.3 (8.8) years. The SICI −1 increased by 53% (mean ratio, 1.53; 95% CI, 1.12-2.09; P = .009) in the 900-mg/d ezogabine group vs placebo group. The SICI −1 did not change in the 600-mg/d ezogabine group vs placebo group (mean ratio, 1.15; 95% CI, 0.87-1.52; P = .31). The resting motor threshold increased in the 600-mg/d ezogabine group vs placebo group (mean ratio, 4.61; 95% CI, 0.21-9.01; P = .04) but not in the 900-mg/d ezogabine group vs placebo group (mean ratio, 1.95; 95% CI, −2.64 to 6.54; P = .40). Ezogabine caused a dose-dependent decrease in excitability by several other metrics, including strength-duration time constant in the 900-mg/d ezogabine group vs placebo group (mean ratio, 0.73; 95% CI, 0.60 to 0.87; P < .001).CONCLUSIONS AND RELEVANCE Ezogabine decreased cortical and spinal motor neuron excitability in participants with ALS, suggesting that such neurophysiological metrics may be used as pharmacodynamic biomarkers in multisite clinical trials.
Introduction: Universally established comprehensive clinical bulbar scales objectively assessing disease progression in amyotrophic lateral sclerosis (ALS) are currently lacking. The goal of this working group project is to design a best practice set of provisional bulbar ALS guidelines, available for immediate implementation within all ALS clinics. Methods: ALS specialists across multiple related disciplines participated in a series of clinical bulbar symposia, intending to identify and summarize the currently accepted best practices for the assessment and management of bulbar dysfunction in ALS Results: Summary group recommendations for individual speech, Augmentative and Alternative Communication (AAC), and swallowing sections were achieved, focusing on the optimal proposed level of care within each domain. Discussion: We have identified specific clinical recommendations for each of the 3 domains of bulbar functioning, available for incorporation within all ALS clinics. Future directions will be to establish a formal set of bulbar guidelines through a methodological and evidence‐based approach. Muscle Nerve 59:531–531, 2019
Current therapeutic development in amyotrophic lateral sclerosis (ALS) relies on individual randomized clinical trials to test a specific investigational product in a single patient population. This approach has intrinsic limitations, including cost, time, and lack of flexibility. Adaptive platform trials represent a novel approach to investigate several interventions for a single disease in a continuous manner. Already in use in oncology, this approach is now being employed more often in neurology. Here, we describe a newly launched platform trial for ALS. The Healey ALS Platform Trial is testing multiple investigational products concurrently in people with ALS, with the goal of rapidly identifying novel treatments, biomarkers, and trial endpoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.