This study evaluated the association of time in range (TIR) of 70-180 mg/dL (3.9-10 mmol/L) with the development or progression of retinopathy and development of microalbuminuria using the Diabetes Control and Complications Trial (DCCT) data set in order to validate the use of TIR as an outcome measure for clinical trials. RESEARCH DESIGN AND METHODS In the DCCT, blood glucose concentrations were measured at a central laboratory from seven fingerstick samples (seven-point testing: pre-and 90-min postmeals and at bedtime) collected during 1 day every 3 months. Retinopathy progression was assessed every 6 months and urinary microalbuminuria development every 12 months. Proportional hazards models were used to assess the association of TIR and other glycemic metrics, computed from the seven-point fingerstick data, with the rate of development of microvascular complications. RESULTS Mean TIR of seven-point profiles for the 1,440 participants was 41 6 16%. The hazard rate of development of retinopathy progression was increased by 64% (95% CI 51-78), and development of the microalbuminuria outcome was increased by 40% (95% CI 25-56), for each 10 percentage points lower TIR (P < 0.001 for each). Results were similar for mean glucose and hyperglycemia metrics. CONCLUSIONS Based on these results, a compelling case can be made that TIR is strongly associated with the risk of microvascular complications and should be an acceptable end point for clinical trials. Although hemoglobin A 1c remains a valuable outcome metric in clinical trials, TIR and other glycemic metricsdespecially when measured with continuous glucose monitoringdadd value as outcome measures in many studies. Hemoglobin A 1c (A1C) became the gold standard for assessing glycemic management after the landmark Diabetes Control and Complications Trial (DCCT) demonstrated the strong association between A1C levels and the risk of chronic diabetic vascular complications, and laboratory methods were developed so that A1C levels could be readily measured with a high degree of precision. Although its important role in diabetes management as a clinical trials outcome and as a predictor of long-term diabetic complications cannot be overstated, A1C does have certain limitations. A1C is a measure of hyperglycemia, but it provides no indication of hypoglycemia, glycemic variability, or daily patterns of glycemia. Notably, considerable
SummaryBackgroundPregnant women with type 1 diabetes are a high-risk population who are recommended to strive for optimal glucose control, but neonatal outcomes attributed to maternal hyperglycaemia remain suboptimal. Our aim was to examine the effectiveness of continuous glucose monitoring (CGM) on maternal glucose control and obstetric and neonatal health outcomes.MethodsIn this multicentre, open-label, randomised controlled trial, we recruited women aged 18–40 years with type 1 diabetes for a minimum of 12 months who were receiving intensive insulin therapy. Participants were pregnant (≤13 weeks and 6 days' gestation) or planning pregnancy from 31 hospitals in Canada, England, Scotland, Spain, Italy, Ireland, and the USA. We ran two trials in parallel for pregnant participants and for participants planning pregnancy. In both trials, participants were randomly assigned to either CGM in addition to capillary glucose monitoring or capillary glucose monitoring alone. Randomisation was stratified by insulin delivery (pump or injections) and baseline glycated haemoglobin (HbA1c). The primary outcome was change in HbA1c from randomisation to 34 weeks' gestation in pregnant women and to 24 weeks or conception in women planning pregnancy, and was assessed in all randomised participants with baseline assessments. Secondary outcomes included obstetric and neonatal health outcomes, assessed with all available data without imputation. This trial is registered with ClinicalTrials.gov, number NCT01788527.FindingsBetween March 25, 2013, and March 22, 2016, we randomly assigned 325 women (215 pregnant, 110 planning pregnancy) to capillary glucose monitoring with CGM (108 pregnant and 53 planning pregnancy) or without (107 pregnant and 57 planning pregnancy). We found a small difference in HbA1c in pregnant women using CGM (mean difference −0·19%; 95% CI −0·34 to −0·03; p=0·0207). Pregnant CGM users spent more time in target (68% vs 61%; p=0·0034) and less time hyperglycaemic (27% vs 32%; p=0·0279) than did pregnant control participants, with comparable severe hypoglycaemia episodes (18 CGM and 21 control) and time spent hypoglycaemic (3% vs 4%; p=0·10). Neonatal health outcomes were significantly improved, with lower incidence of large for gestational age (odds ratio 0·51, 95% CI 0·28 to 0·90; p=0·0210), fewer neonatal intensive care admissions lasting more than 24 h (0·48; 0·26 to 0·86; p=0·0157), fewer incidences of neonatal hypoglycaemia (0·45; 0·22 to 0·89; p=0·0250), and 1-day shorter length of hospital stay (p=0·0091). We found no apparent benefit of CGM in women planning pregnancy. Adverse events occurred in 51 (48%) of CGM participants and 43 (40%) of control participants in the pregnancy trial, and in 12 (27%) of CGM participants and 21 (37%) of control participants in the planning pregnancy trial. Serious adverse events occurred in 13 (6%) participants in the pregnancy trial (eight [7%] CGM, five [5%] control) and in three (3%) participants in the planning pregnancy trial (two [4%] CGM and one [2%] control). The most...
Continuous glucose monitoring can be associated with improved glycemic control in adults with type 1 diabetes. Further work is needed to identify barriers to effectiveness of continuous monitoring in children and adolescents. (ClinicalTrials.gov number, NCT00406133.)
Among patients with type 1 diabetes, 12-week use of a closed-loop system, as compared with sensor-augmented pump therapy, improved glucose control, reduced hypoglycemia, and, in adults, resulted in a lower glycated hemoglobin level. (Funded by the JDRF and others; AP@home04 and APCam08 ClinicalTrials.gov numbers, NCT01961622 and NCT01778348.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.