and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination.OBJECTIVE To evaluate and, as needed, update definitions for sepsis and septic shock.PROCESS A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). KEY FINDINGS FROM EVIDENCE SYNTHESISLimitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant.RECOMMENDATIONS Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less.CONCLUSIONS AND RELEVANCE These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developi...
shock (27). The specific components of performance improvement did not appear to be as important as the presence of a program that included sepsis screening and metrics.Sepsis screening tools are designed to promote early identification of sepsis and consist of manual methods or automated use of the electronic health record (EHR). There is wide variation in diagnostic accuracy of these tools with most having poor predictive values, although the use of some was associated with improvements in care processes (28)(29)(30)(31). A variety of clinical variables and tools are used for sepsis screening, such as systemic inflammatory response syndrome (SIRS) criteria, vital signs, signs of infection, quick Sequential Organ Failure Score (qSOFA) or Sequential Organ Failure Assessment (SOFA) criteria, National Early Warning Score (NEWS), or Modified Early Warning Score (MEWS) (26,32). Machine learning may improve performance of screening tools, and in a meta-analysis of 42,623 patients from seven studies for predicting hospital acquired sepsis the pooled area under the receiving operating curve (SAUROC) (0.89; 95% CI, 0.86−0.92); sensitivity (81%; 95% CI, 80−81), and specificity (72%; 95% CI, 72−72) was higher for machine learning than the SAUROC for traditional screening tools such as SIRS (0.70), MEWS (0.50), and SOFA (0.78) (32).Screening tools may target patients in various locations, such as in-patient wards, emergency departments, or ICUs (28)(29)(30)32). A pooled analysis of three RCTs did not demonstrate a mortality benefit of active screening (RR, 0.90; 95% CI, 0.51−1.58) (33-35). However, while there is wide variation in sensitivity and specificity of sepsis screening tools, they are an important component of identifying sepsis early for timely intervention.Standard operating procedures are a set of practices that specify a preferred response to specific clinical circumstances (36). Sepsis standard operating procedures, initially specified as Early Goal Directed Therapy have evolved to "usual care" which includes a standard approach with components of the sepsis bundle, early identification, lactate, cultures, antibiotics, and fluids (37). A large study examined the association between implementation of state-mandated sepsis protocols, compliance, and mortality. A retrospective cohort study of 1,012,410 sepsis admissions to 509 hospitals in the United States in a retrospective cohort examined mortality before (27 months) and after (30 months) implementation of New York state sepsis regulations, with a concurrent control population from four other states (38). In this comparative interrupted time series, mortality was lower in hospitals with higher compliance with achieving the sepsis bundles successfully.Lower resource countries may experience a different effect. A meta-analysis of two RCTs in Sub-Saharan Africa found higher mortality (RR, 1.26; 95% CI, 1.00−1.58) with standard operating procedures compared with usual care, while it was decreased in one observational study (adjusted hazard ratio [HR]; 95% CI, 0.55...
Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.
Setting: Six coronavirus disease 2019 designated ICUs at three hospitals within an academic health center network in Atlanta, Georgia, United States. Patients: Adults greater than or equal to 18 years old with confirmed severe acute respiratory syndrome-CoV-2 disease who were admitted to an ICU during the study period. Interventions: None. Measurements and Main Results: Among 217 critically ill patients, mortality for those who required mechanical ventilation was 35.7% (59/165), with 4.8% of patients (8/165) still on the ventilator at the time of this report. Overall mortality to date in this critically ill cohort is 30.9% (67/217) and 60.4% (131/217) patients have survived to hospital discharge. Mortality was significantly associated with older age, lower body mass index, chronic renal disease, higher Sequential Organ Failure Assessment score, lower Pao 2 / Fio 2 ratio, higher d-dimer, higher C-reactive protein, and receipt of mechanical ventilation, vasopressors, renal replacement therapy, or vasodilator therapy. Conclusions: Despite multiple reports of mortality rates exceeding 50% among critically ill adults with coronavirus disease 2019, particularly among those requiring mechanical ventilation, our early experience indicates that many patients survive their critical illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.