Long-term SARS-CoV-2 shedding was observed from the upper respiratory tract of a female immunocompromised patient with chronic lymphocytic leukemia and acquired hypogammaglobulinemia. Shedding of infectious SARS-CoV-2 was observed up to 70 days, and genomic and subgenomic RNA up to 105 days past initial diagnosis. The infection was not cleared after a first treatment with convalescent plasma, suggesting limited impact on SARS-CoV-2 in the upper respiratory tract within this patient. Several weeks after a second convalescent plasma transfusion, SARS-CoV-2 RNA was no longer detected. We observed marked within-host genomic evolution of SARS-CoV-2, with continuous turnover of dominant viral variants. However, replication kinetics in Vero E6 cells and primary human alveolar epithelial tissues were not affected. Our data indicate that certain immunocompromised patients may shed infectious virus for longer durations than previously recognized. Detection of subgenomic RNA is recommended in persistently SARS-CoV-2 positive individuals as a proxy for shedding of infectious virus.
Summary Effective therapeutics to treat COVID-19 are urgently needed. While many investigational, approved, and repurposed drugs have been suggested, preclinical data from animal models can guide the search for effective treatments by ruling out treatments without in vivo efficacy. Remdesivir (GS-5734) is a nucleotide analog prodrug with broad antiviral activity 1 , 2 , that is currently investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration 3 , 4 . In animal models, remdesivir treatment was effective against MERS-CoV and SARS-CoV infection. 2 , 5 , 6 In vitro , remdesivir inhibited replication of SARS-CoV-2. 7 , 8 Here, we investigated the efficacy of remdesivir treatment in arhesus macaque model of SARS-CoV-2 infection 9 . In contrast to vehicle-treated animals, animals treated with remdesivir did not show signs of respiratory disease and had reduced pulmonary infiltrates on radiographs and reduced virus titers in bronchoalveolar lavages 12hrs after the first treatment administration. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, lung viral loads of remdesivir-treated animals were lower and there was a reduction in damage to the lungs. Thus, therapeutic remdesivir treatment initiated early during infection had a clinical benefit in SARS-CoV-2-infected rhesus macaques. Although the rhesus macaque model does not represent the severe disease observed in a proportion of COVID-19 patients, our data support early remdesivir treatment initiation in COVID-19 patients to prevent progression to pneumonia.
Infections caused by drug-resistant bacteria are a major problem worldwide. Carbapenem-resistant Klebsiella pneumoniae, most notably isolates classified as multilocus sequence type (ST) 258, have emerged as an important cause of hospital deaths. ST258 isolates are predominantly multidrug resistant, and therefore infections caused by them are difficult to treat. It is not known why the ST258 lineage is the most prevalent cause of multidrug-resistant K. pneumoniae infections in the United States and other countries. Here we tested the hypothesis that carbapenem-resistant ST258 K. pneumoniae is a single genetic clone that has disseminated worldwide. We sequenced to closure the genomes of two ST258 clinical isolates and used these genomes as references for comparative genome sequencing of 83 additional clinical isolates recovered from patients at diverse geographic locations worldwide. Phylogenetic analysis of the SNPs in the core genome of these isolates revealed that ST258 K. pneumoniae organisms are two distinct genetic clades. This unexpected finding disproves the single-clone hypothesis. Notably, genetic differentiation between the two clades results from an ∼215-kb region of divergence that includes genes involved in capsule polysaccharide biosynthesis. The region of divergence appears to be a hotspot for DNA recombination events, and we suggest that this region has contributed to the success of ST258 K. pneumoniae. Our findings will accelerate research on novel diagnostic, therapeutic, and vaccine strategies designed to prevent and/or treat infections caused by multidrug resistant K. pneumoniae.antibiotic resistance | carbapenemase | Enterobacteriaceae | plasmid
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.