Fabry disease (FD) is an X-linked lysosomal storage disorder caused by a deficiency of the lysosomal hydrolase α-galactosidase A (α-GalA) that leads to the intra-lysosomal accumulation of globotriaosylceramide (Gb3) in various organ systems. As a consequence, a multisystems disorder develops, culminating in stroke, progressive renal and cardiac dysfunction. Enzyme replacement therapy (ERT) offers a specific treatment for patients affected by FD, though the monitoring of treatment is hindered by a lack of surrogate markers of response. Remarkably, due to the high heterogeneity of the Fabry phenotype, both diagnostic testing and treatment decisions are more challenging in females than in males; thus, reliable biomarkers for Fabry disease are needed, particularly for female patients. Here, we use a proteomic approach for the identification of disease-associated markers that can be used for the early diagnosis of FD as well as for monitoring the effectiveness of ERT. Our data show that the urinary proteome of Fabry naïve patients is different from that of normal subjects. In addition, biological pathways mainly affected by FD are related to immune response, inflammation, and energetic metabolism. In particular, the up-regulation of uromodulin, prostaglandin H2 d-isomerase and prosaposin in the urine of FD patients was demonstrated; these proteins might be involved in kidney damage at the tubular level, inflammation and immune response. Furthermore, comparing the expression of these proteins in Fabry patients before and after ERT treatment, a decrease of their concentration was observed, thus demonstrating the correlation between the identified markers and the effectiveness of the pharmacological treatment.
Kidney transplantation should be the standard of care for Fabry patients progressing towards ESRD. Transplanted Fabry patients on ERT may do better than patients remaining on maintenance dialysis. Larger, controlled studies in Fabry patients with ESRD will have to demonstrate if ERT is able to change the trajectory of cardiac disease and can preserve graft renal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.