Innate-like tissue-resident γδ T cell compartments capable of protecting against carcinogenesis are well established in mice. Conversely, the degree to which they exist in humans, their potential properties, and their contributions to host benefit are mostly unresolved. Here, we demonstrate that healthy human breast harbors a distinct γδ T cell compartment, primarily expressing T cell receptor (TCR) Vδ1 chains, by comparison to Vδ2 chains that predominate in peripheral blood. Breast-resident Vδ1+ cells were functionally skewed toward cytolysis and IFN-γ production, but not IL-17, which has been linked with inflammatory pathologies. Breast-resident Vδ1+ cells could be activated innately via the NKG2D receptor, whereas neighboring CD8+ αβ T cells required TCR signaling. A comparable population of Vδ1+ cells was found in human breast tumors, and when paired tumor and nonmalignant samples from 11 patients with triple-negative breast cancer were analyzed, progression-free and overall survival correlated with Vδ1+ cell representation, but not with either total γδ T cells or Vδ2+ T cells. As expected, progression-free survival also correlated with αβ TCRs. However, whereas in most cases TCRαβ repertoires focused, typical of antigen-specific responses, this was not observed for Vδ1+ cells, consistent with their innate-like responsiveness. Thus, maximal patient benefit may accrue from the collaboration of innate-like responses mounted by tissue-resident Vδ1+ compartments and adaptive responses mounted by αβ T cells.
Environmental carcinogenic exposures are major contributors to global disease burden yet how they promote cancer is unclear. Over 70 years ago, the concept of tumour promoting agents driving latent clones to expand was rst proposed. In support of this model, recent evidence suggests that human tissue contains a patchwork of mutant clones, some of which harbour oncogenic mutations, and many environmental carcinogens lack a clear mutational signature. We hypothesised that the environmental carcinogen, <2.5μm particulate matter (PM2.5), might promote lung cancer promotion through nonmutagenic mechanisms by acting on pre-existing mutant clones within normal tissues in patients with lung cancer who have never smoked, a disease with a high frequency of EGFR activating mutations. We analysed PM2.5 levels and cancer incidence reported by UK Biobank, Public Health England, Taiwan Chang Gung Memorial Hospital (CGMH) and Korean Samsung Medical Centre (SMC) from a total of 463,679 individuals between 2006-2018. We report associations between PM2.5 levels and the incidence of several cancers, including EGFR mutant lung cancer. We nd that pollution on a background of EGFR mutant lung epithelium promotes a progenitor-like cell state and demonstrate that PM accelerates lung cancer progression in EGFR and Kras mutant mouse lung cancer models. Through parallel exposure studies in mouse and human participants, we nd evidence that in ammatory mediators, such as interleukin-1 , may act upon EGFR mutant clones to drive expansion of progenitor cells. Ultradeep mutational pro ling of histologically normal lung tissue from 247 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 33% of normal tissue samples, respectively. These results support a tumour-promoting role for PM acting on latent mutant clones in normal lung tissue and add to evidence providing an urgent mandate to address air pollution in urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.