Organic–inorganic ternary nanohybrids consisting of oxidized-single walled carbon nanohorns-SnO2-polyvinylpyrrolidone (ox-SWCNH/SnO2/PVP) with stoichiometry 1/1/1 and 2/1/1 and ox-SWCNH/ZnO/PVP = 5/2/1 and 5/3/2 (all mass ratios) were synthesized and characterized as sensing films of chemiresistive test structures for ethanol vapor detection in dry air, in the range from 0 up to 50 mg/L. All the sensing films had an ox-SWCNH concentration in the range of 33.3–62.5 wt%. A comparison between the transfer functions and the response and recovery times of these sensing devices has shown that the structures with ox-SWCNH/SnO2/PVP = 1/1/1 have the highest relative sensitivities of 0.0022 (mg/L)−1, while the devices with ox-SWCNH/SnO2/PVP = 2/1/1 have the lowest response time (15 s) and recovery time (50 s) for a room temperature operation, proving the key role of carbonic material in shaping the static and dynamic performance of the sensor. These response and recovery times are lower than those of “heated” commercial sensors. The sensing mechanism is explained in terms of the overall response of a p-type semiconductor, where ox-SWCNH percolated between electrodes of the sensor, shunting the heterojunctions made between n-type SnO2 or ZnO and p-type ox-SWCNH. The hard–soft acid–base (HSAB) principle supports this mechanism. The low power consumption of these devices, below 2 mW, and the sensing performances at room temperature may open new avenues towards ethanol sensors for passive samplers of environment monitoring, alcohol test portable instruments and wireless network sensors for Internet of Things applications.
The development of materials offering electromagnetic interference (EMI) shielding is of significant consideration, since this can help in expanding the lifetime of devices, electromagnetic compatibility, as well as the protection of biological systems. Conductive paints used widely today in electromagnetic interference (EMI) shielding applications are often based on organic solvents that can create safety issues due to the subsequent environment problems. This paper concerned the development of eco-friendly conductive water-based paints for use in EMI-shielding applications. Graphene nanoplatelets, polyaniline emeraldine (PANI) doped with poly(styrene sulfonic acid) (PSS) or HCl or HBr and poly(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid) (PEDOT:PSS) in various ratios were employed in a water base for developing the paints. The target was to develop homogeneous water-based paint-like fluid mixtures easily applied onto surfaces using a paint brush, leading in homogeneous, uniform, opaque layers, draying fast in air at room temperature, and having quite good electrical conductivity that can offer efficient EMI-shielding performance. The results of this parametric trial indicated the optimum compositions leading in paints with optimized properties that can result in uniform, homogeneous, and conductive layers up to a thickness of over 500 μm without deformation and cracking, offering attenuation of up to 60 dBs of incoming GHz electromagnetic radiation. In addition, the structural and morphological characteristics of these paints were studied in detail.
A new approach regarding the development of nanostructured V2O5 electrochromic thin films at low temperature (250 °C), using air-carrier spray deposition and ammonium metavanadate in water as precursor is presented. The obtained V2O5 films were characterized by X-ray diffraction, scanning electron microscopy and Raman spectroscopy, while their electrochromic response was studied using UV-vis absorption spectroscopy and cyclic voltammetry. The study showed that this simple, cost effective, suitable for large area deposition method can lead to V2O5 films with large active surface for electrochromic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.