Microbiota-based prediction of chronic infections is promising yet not well established. Early childhood caries (ECC) is the most common infection in children. Here we simultaneously tracked microbiota development at plaque and saliva in 50 4-year-old preschoolers for 2 years; children either stayed healthy, transitioned into cariogenesis, or experienced caries exacerbation. Caries onset delayed microbiota development, which is otherwise correlated with aging in healthy children. Both plaque and saliva microbiota are more correlated with changes in ECC severity (dmfs) during onset than progression. By distinguishing between aging- and disease-associated taxa and exploiting the distinct microbiota dynamics between onset and progression, we developed a model, Microbial Indicators of Caries, to diagnose ECC from healthy samples with 70% accuracy and predict, with 81% accuracy, future ECC onsets for samples clinically perceived as healthy. Thus, caries onset in apparently healthy teeth can be predicted using microbiota, when appropriately de-trended for age.
Predictive modeling of human disease based on the microbiota holds great potential yet remains challenging. Here, 50 adults underwent controlled transitions from naturally occurring gingivitis, to healthy gingivae (baseline), and to experimental gingivitis (EG). In diseased plaque microbiota, 27 bacterial genera changed in relative abundance and functional genes including 33 flagellar biosynthesis-related groups were enriched. Plaque microbiota structure exhibited a continuous gradient along the first principal component, reflecting transition from healthy to diseased states, which correlated with Mazza Gingival Index. We identified two host types with distinct gingivitis sensitivity. Our proposed microbial indices of gingivitis classified host types with 74% reliability, and, when tested on another 41-member cohort, distinguished healthy from diseased individuals with 95% accuracy. Furthermore, the state of the microbiota in naturally occurring gingivitis predicted the microbiota state and severity of subsequent EG (but not the state of the microbiota during the healthy baseline period). Because the effect of disease is greater than interpersonal variation in plaque, in contrast to the gut, plaque microbiota may provide advantages in predictive modeling of oral diseases.
Although Traditional Chinese Medicine (TCM) preparations have long history with successful applications, the scientific and systematic quality assessment of TCM preparations mainly focuses on chemical constituents and is far from comprehensive. There are currently only few primitive studies on assessment of biological ingredients in TCM preparations. Here, we have proposed a method, M-TCM, for biological assessment of the quality of TCM preparations based on high-throughput sequencing and metagenomic analysis. We have tested this method on Liuwei Dihuang Wan (LDW), a TCM whose ingredients have been well-defined. Our results have shown that firstly, this method could determine the biological ingredients of LDW preparations. Secondly, the quality and stability of LDW varies significantly among different manufacturers. Thirdly, the overall quality of LDW samples is significantly affected by their biological contaminations. This novel strategy has the potential to achieve comprehensive ingredient profiling of TCM preparations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.