The astrophysical s-process is one of the two main processes forming elements heavier than iron. A key outstanding uncertainty surrounding s-process nucleosynthesis is the neutron flux generated by the 22 Ne(α, n) 25 Mg reaction during the He-core and C-shell burning phases of massive stars. This reaction, as well as the competing 22 Ne(α, γ) 26 Mg reaction, is not well constrained in the important temperature regime from ∼0.2-0.4 GK, owing to uncertainties in the nuclear properties of resonances lying within the Gamow window. To address these uncertainties, we have performed a new measurement of the 22 Ne( 6 Li, d) 26 Mg reaction in inverse kinematics, detecting the outgoing deuterons and 25,26 Mg recoils in coincidence. We have established a new n/γ decay branching ratio of 1.14(26) for the key E x = 11.32 MeV resonance in 26 Mg, which results in a new (α, n) strength for this resonance of 42(11) µeV when combined with the well-established (α, γ) strength of this resonance. We have also determined new upper limits on the α partial widths of neutron-unbound resonances at E x = 11. 112, 11.163, 11.169, and 11.171 MeV. Monte-Carlo calculations of the stellar 22 Ne(α, n) 25 Mg and 22 Ne(α, γ) 26 Mg rates, which incorporate these results, indicate that both rates are substantially lower than previously thought in the temperature range from ∼0.2-0.4 GK.
FANCD2 is an evolutionarily conserved Fanconi anemia (FA) gene that plays a key role in DNA double-strand-type damage responses. Using complementation assays and immunoblotting, a consortium of American and European groups assigned 29 patients with FA from 23 families and 4 additional unrelated patients to complementation group FA-D2. This amounts to 3%-6% of FA-affected patients registered in various data sets. Malformations are frequent in FA-D2 patients, and hematological manifestations appear earlier and progress more rapidly when compared with all other patients combined (FA-non-D2) in the International Fanconi Anemia Registry. FANCD2 is flanked by two pseudogenes. Mutation analysis revealed the expected total of 66 mutated alleles, 34 of which result in aberrant splicing patterns. Many mutations are recurrent and have ethnic associations and shared allelic haplotypes. There were no biallelic null mutations; residual FANCD2 protein of both isotypes was observed in all available patient cell lines. These analyses suggest that, unlike the knockout mouse model, total absence of FANCD2 does not exist in FA-D2 patients, because of constraints on viable combinations of FANCD2 mutations. Although hypomorphic mutations arie involved, clinically, these patients have a relatively severe form of FA.
The TexAT (Texas Active Target) detector is a new active-target time projection chamber (TPC) that was built at the Cyclotron Institute Texas A&M University. The detector is designed to be of general use for nuclear structure and nuclear astrophysics experiments with rare isotope beams. TexAT combines a highly segmented Time Projection Chamber (TPC) with two layers of solid state detectors. It provides high efficiency and flexibility for experiments with low intensity exotic beams, allowing for the 3D track reconstruction of the incoming and outgoing particles involved in nuclear reactions and decays.
The structure of exotic nucleus 10 N was studied using 9 C+p resonance scattering. Two = 0 resonances were found to be the lowest states in 10 N. The ground state of 10 N is unbound with respect to proton decay by 2.2(2) or 1.9(2) MeV depending on the 2 − or 1 − spin-parity assignment, and the first excited state is unbound by 2.8(2) MeV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.