Mast cells are critical for allergic reactions, but also for innate or acquired immunity and inflammatory conditions that worsen by stress. Corticotropin-releasing hormone (CRH), which activates the hypothalamic-pituitary-adrenal axis under stress, also has proinflammatory peripheral effects possibly through mast cells. We investigated the expression of CRH receptors and the effects of CRH in the human leukemic mast cell (HMC-1) line and human umbilical cord blood-derived mast cells. We detected mRNA for CRH-R1α, 1β, 1c, 1e, 1f isoforms, as well as CRH-R1 protein in both cell types. CRH-R2α (but not R2β or R2γ) mRNA and protein were present only in human cord blood-derived mast cells. CRH increased cAMP and induced secretion of vascular endothelial growth factor (VEGF) without tryptase, histamine, IL-6, IL-8, or TNF-α release. The effects were blocked by the CRH-R1 antagonist antalarmin, but not the CRH-R2 antagonist astressin 2B. CRH-stimulated VEGF production was mediated through activation of adenylate cyclase and increased cAMP, as evidenced by the fact that the effect of CRH was mimicked by the direct adenylate cyclase activator forskolin and the cell-permeable cAMP analog 8-bromo-cAMP, whereas it was abolished by the adenylate cyclase inhibitor SQ22536. This is the first evidence that mast cells express functional CRH receptors and that CRH can induce VEGF secretion selectively. CRH-induced mast cell-derived VEGF could, therefore, be involved in chronic inflammatory conditions associated with increased VEGF, such as arthritis or psoriasis, both of which worsen by stress.
1 Mast cells participate in allergies, and also in immunity and inflammation by secreting proinflammatory cytokines. 2 Flavonoids are naturally occurring polyphenolic plant compounds, one group of which -the flavonols, inhibits histamine and some cytokine release from rodent basophils and mast cells. However, the effect of flavonols on proinflammatory mediator release and their possible mechanism of action in human mast cells is not well defined. 3 Human umbilical cord blood-derived cultured mast cells (hCBMCs) grown in the presence of stem cell factor (SCF) and interleukin (IL)-6 were preincubated for 15 min with the flavonols quercetin, kaempferol, myricetin and morin (0.01, 0.1, 1, 10 or 100 mM), followed by activation with anti-IgE. Secretion was quantitated for IL-6, IL-8, tumor necrosis factor-alpha (TNF-a), histamine and tryptase levels. 4 Release of IL-6, IL-8 and TNF-a was inhibited by 82-93% at 100 mM quercetin and kaempferol, and 31-70% by myricetin and morin. Tryptase release was inhibited by 79-96% at 100 mM quercetin, kampferol and myricetin, but only 39% by morin; histamine release was inhibited 52-77% by the first three flavonols, but only 28% by morin. These flavonols suppressed intracellular calcium ion elevations in a dose-response manner, with morin being the weakest; they also inhibited phosphorylation of the calcium-insensitive protein kinase C theta (PKC y). 5 Flavonol inhibition of IgE-mediated proinflammatory mediator release from hCBMCs may be due to inhibition of intracellular calcium influx and PKC y signaling. Flavonols may therefore be suitable for the treatment of allergic and inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.