A phase I dose-escalating clinical trial of andrographolide from Andrographis paniculata was conducted in 13 HIV positive patients and five HIV uninfected, healthy volunteers. The objectives were primarily to assess safety and tolerability and secondarily to assess effects on plasma virion HIV-1 RNA levels and CD4(+) lymphocyte levels. No subjects used antiretroviral medications during the trial. Those with liver or renal abnormalities were excluded. The planned regimen was 5 mg/kg bodyweight for 3 weeks, escalating to 10 mg/kg bodyweight for 3 weeks, and to 20 mg/kg bodyweight for a final 3 weeks. The trial was interrupted at 6 weeks due to adverse events including an anaphylactic reaction in one patient. All adverse events had resolved by the end of observation. A significant rise in the mean CD4(+) lymphocyte level of HIV subjects occurred after administration of 10 mg/kg andrographolide (from a baseline of 405 cells/mm(3) to 501 cells/mm(3); p = 0.002). There were no statistically significant changes in mean plasma HIV-1 RNA levels throughout the trial. Andrographolide may inhibit HIV-induced cell cycle dysregulation, leading to a rise in CD4(+) lymphocyte levels in HIV-1 infected individuals.
Purpose: Polysaccharide krestin (PSK) is a mushroom extract that has been long used in Asia and recently in Western countries as a treatment for cancer due to its presumed immune potentiating effects. Although there have been reports of clinical responses after patients have ingested PSK, the mechanism of action of the agent remains undefined. The current study was undertaken to investigate the mechanism of the antitumor actions of PSK.Experimental Design: The immunostimulatory effect of PSK was first evaluated in vitro using splenocytes from neu transgenic mice and Toll-like receptor (TLR) 2 knockout (TLR2 À/À ) mice. Then the immunostimualtory and antitumor effect of PSK was determined using tumor-bearing neu transgenic mice, TLR2, and wild-type C57BL/6 mice. Results: We demonstrate that PSK is a selective TLR2 agonist, and the activation of dendritic cells (DC) and T cells by PSK is dependent on TLR2. Oral administration of PSK in neu transgenic mice significantly inhibits breast cancer growth. Selective depletion of specific cell populations suggests that the antitumor effect of PSK is dependent on both CD8þ T cell and NK cells, but not CD4 þ T cells. PSK does not inhibit tumor growth in TLR2 À/À mice suggesting that the antitumor effect is mediated by TLR2.Conclusion: These results demonstrate that PSK, a natural product commonly used for the treatment of cancer, is a specific TLR2 agonist and has potent antitumor effects via stimulation of both innate and adaptive immune pathways.
Purpose The therapeutic effect of trastuzumab monoclonal antibody (mAb) therapy has been shown to be partially dependent on functional NK cells. Novel agents that enhance NK cell function could potentially improve the anti-tumor effect of trastuzumab. We recently identified polysaccharide krestin (PSK), a natural product extracted from medicinal mushroom Trametes Versicolor, as a potent TLR2 agonist. The current study was undertaken to evaluate the effect of PSK on human NK cells and the potential of using PSK to enhance HER2-targeted mAb therapy. Experimental Design Human PBMC were stimulated with PSK to evaluate the effect of PSK on NK cell activation, IFN-γ production, cytotoxicity, and trastuzumab-mediated ADCC. Whether the effect of PSK on NK cells is direct or indirect was also investigated. Then in vivo experiment in neu transgenic mice was carried out to determine the potential of using PSK to augment the anti-tumor effect of HER2-targeted mAb therapy. Results PSK activated human NK cells to produce IFN-γ and to lyse K562 target cells. PSK also enhanced trastuzumab-mediated ADCC against SKBR3 and MDA-MB-231 breast cancer cells. Both direct and IL-12-dependent indirect effects seem to be involved in the effect of PSK on NK cells. Oral administration of PSK significantly potentiated the anti-tumor effect of anti-HER2/neu mAb therapy in neu-transgenic mice. Conclusion These results demonstrated that PSK activates human NK cells and potentiates trastuzumab-mediated ADCC. Concurrent treatment of PSK and trastuzumab may be a novel way to augment the anti-tumor effect of trastuzumab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.