Whole genome duplications (WGDs) occurred in the distant evolutionary history of many lineages and are particularly frequent in the flowering plant lineages. Following paleopolyploidization in plants, most duplicated genes are deleted by intrachromosomal recombination, a process referred to as fractionation. In the examples studied so far, genes are disproportionately lost from one of the parental subgenomes (biased fractionation) and the subgenome having lost the lowest number of genes is more expressed (genome dominance). In the present study, we analyzed the pattern of gene deletion and gene expression following the most recent WGD in banana (alpha event) and extended our analyses to seven other sequenced plant genomes: poplar, soybean, medicago, arabidopsis, sorghum, brassica, and maize. We propose a new class of ancient WGD, with Musa (alpha), poplar, and soybean as members, where genes are both deleted and expressed to an equal extent (unbiased fractionation and genome equivalence). We suggest that WGDs with genome dominance and biased fractionation (Class I) may result from ancient allotetraploidies, while WGDs without genome dominance or biased fractionation (Class II) may result from ancient autotetraploidies.
BackgroundThe emergence of epithelia was the foundation of metazoan expansion. Epithelial tissues are a hallmark of metazoans deeply rooted in the evolution of their complex developmental morphogenesis processes. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution.ResultsTo investigate the early evolution of animal epithelia, we sequenced the genome and transcriptomes of two new sponge species to characterize epithelial markers such as the E-cadherin complex and the polarity complexes for all classes (Calcarea, Demospongiae, Hexactinellida, Homoscleromorpha) of sponges (phylum Porifera) and compare them with their homologues in Placozoa and in Ctenophora. We found that Placozoa and most sponges possess orthologues of all essential genes encoding proteins characteristic of bilaterian epithelial cells, as well as their conserved interaction domains. In stark contrast, we found that ctenophores lack several major polarity complex components such as the Crumbs complex and Scribble. Furthermore, the E-cadherin ctenophore orthologue exhibits a divergent cytoplasmic domain making it unlikely to interact with its canonical cytoplasmic partners.ConclusionsThese unexpected findings challenge the current evolutionary paradigm on the emergence of epithelia. Altogether, our results raise doubt on the homology of protein complexes and structures involved in cell polarity and adhesive-type junctions between Ctenophora and Bilateria epithelia.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4715-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.