The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from <40 degrees to 90 degrees C at pH 9 to 11, and carbonate chimneys 30 to 60 meters tall. A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.
Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.
The analytical power of environmental DNA sequences for modeling microbial ecosystems depends on accurate assessments of population structure, including diversity (richness) and relative abundance (evenness). We investigated both aspects of population structure for microbial communities at two neighboring hydrothermal vents by examining the sequences of more than 900,000 microbial small-subunit ribosomal RNA amplicons. The two vent communities have different population structures that reflect local geochemical regimes. Descriptions of archaeal diversity were nearly exhaustive, but despite collecting an unparalleled number of sequences, statistical analyses indicated additional bacterial diversity at every taxonomic level. We predict that hundreds of thousands of sequences will be necessary to capture the vast diversity of microbial communities, and that different patterns of evenness for both high- and low-abundance taxa may be important in defining microbial ecosystem dynamics.
Little is known about the potential for life in the vast, low-temperature (<100 degrees C) reservoir of fluids within mid-ocean ridge flank and ocean basin crust. Recently, an overpressured 300-meter-deep borehole was fitted with an experimental seal (CORK) delivering crustal fluids to the sea floor for discrete and large-volume sampling and characterization. Results demonstrate that the 65 degrees C fluids from 3.5-million-year-old ocean crust support microbial growth. Ribosomal RNA gene sequence data indicate the presence of diverse Bacteria and Archaea, including gene clones of varying degrees of relatedness to known nitrate reducers (with ammonia production), thermophilic sulfate reducers, and thermophilic fermentative heterotrophs, all consistent with fluid chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.