The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (>10(19)Wcm2) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (<10(13)Wcm2) nanosecond laser pulses, focused onto the front surface of the target foil prior to the arrival of the high intensity pulse, it is demonstrated that the proton beam profile can be actively manipulated. In particular, results obtained with an annular intensity distribution at the focus of the low intensity beam are presented, showing smooth proton beams with a sharp circular boundary at all energies, which represents a significant improvement in the beam quality compared to irradiation with the picosecond beam alone.
We report on the theory and development of a diffractive element composed of a binary phase zone-plate array. This component conditions the intensity distribution in the focal plane of a conventional refractive lens to generate efficiently (82%) a flattop intensity envelope on target. Analysis of the design indicates that manufacturing tolerances are not critical. Experimental performances on target from x-ray emission and shock-breakout measurements are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.