We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the 28 events at the 4σ level. These 28 events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.
Using the CLEO II detector, we have measured the differential cross sections for exclusive two-photon production of light pseudoscalar mesons 0 , , and Ј. From our measurements we have obtained the form factors associated with the electromagnetic transitions ␥*␥→meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30 GeV 2 for 0 , , and Ј, respectively, and have made comparisons to various theoretical predictions. ͓S0556-2821͑98͒01001-7͔
We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04±0.16 and 1.14±0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current ν(e,μ,τ) (ν(e,μ,τ)) or charged-current ν(e) (ν(e)) interactions within the IceCube detector. The events were discovered in a search for ultrahigh energy neutrinos using data corresponding to 615.9 days effective live time. The expected number of atmospheric background is 0.082±0.004(stat)(-0.057)(+0.041)(syst). The probability of observing two or more candidate events under the atmospheric background-only hypothesis is 2.9×10(-3) (2.8σ) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux; the moderate significance, however, does not permit a definitive conclusion at this time.
Although high-energy astrophysical neutrinos were discovered in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts for the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole site and at IceCube facilities in the north that have enabled this fast follow-up program to be implemented. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.