In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH + , H 2 O + , and H 3 O + begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H 2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζ H) and molecular hydrogen fraction (f H 2). We present observations targeting transitions of OH + , H 2 O + , and H 3 O + made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH + and H 2 O + are detected in absorption in multiple velocity components along every sight line, but H 3 O + is only detected along 7 sight lines. From the molecular abundances we compute f H 2 in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH + and H 2 O + primarily reside in gas with low H 2 fractions. We also infer ζ H throughout our sample, and find a lognormal distribution with mean log(ζ H) = −15.75 (ζ H = 1.78 × 10 −16 s −1) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H + 3 observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.