When Earth-mass extrasolar planets first become detectable, one challenge will be to determine which of these worlds harbor liquid water, a widely used criterion for habitability. Some of the first observations of these planets will consist of disc-averaged, time-resolved broadband photometry. To simulate such data, the Deep Impact spacecraft obtained light curves of Earth at seven wavebands spanning 300-1000 nm as part of the EPOXI mission of opportunity. In this paper we analyze discintegrated light curves, treating Earth as if it were an exoplanet, to determine if we can detect the presence of oceans and continents. We present two observations each spanning one day, taken at gibbous phases of 57 • and 77 • , respectively. As expected, the time-averaged spectrum of Earth is blue at short wavelengths due to Rayleigh scattering, and gray redward of 600 nm due to reflective clouds. The rotation of the planet leads to diurnal albedo variations of 15-30%, with the largest relative changes occuring at the reddest wavelengths. To characterize these variations in an unbiased manner we carry out a principal component analysis of the multi-band light curves; this analysis reveals that 98% of the diurnal color changes of Earth are due to only 2 dominant eigencolors. We use the time-variations of these two eigencolors to construct longitudinal maps of the Earth, treating it as a non-uniform Lambert sphere. We find that the spectral and spatial distributions of the eigencolors correspond to cloud-free continents and oceans; this despite the fact that our observations were taken on days with typical cloud cover. We also find that the near-infrared wavebands are particularly useful in distinguishing between land and water. Based on this experiment we conclude that it should be possible to infer the existence of water oceans on exoplanets with time-resolved broadband observations taken by a large space-based coronagraphic telescope.
Deep Impact collided with comet Tempel 1, excavating a crater controlled by gravity. The comet's outer layer is composed of 1- to 100-micrometer fine particles with negligible strength (<65 pascals). Local gravitational field and average nucleus density (600 kilograms per cubic meter) are estimated from ejecta fallback. Initial ejecta were hot (>1000 kelvins). A large increase in organic material occurred during and after the event, with smaller changes in carbon dioxide relative to water. On approach, the spacecraft observed frequent natural outbursts, a mean radius of 3.0 +/- 0.1 kilometers, smooth and rough terrain, scarps, and impact craters. A thermal map indicates a surface in equilibrium with sunlight.
Understanding how comets work--what drives their activity--is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO(2), which drags chunks of ice out of the nucleus. It also shows substantial differences in the relative abundance of volatiles from various parts of the nucleus.
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-byline, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of *100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of *10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of *7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.
Eros is a very elongated (34 kilometers by 11 kilometers by 11 kilometers) asteroid, most of the surface of which is saturated with craters smaller than 1 kilometer in diameter. The largest crater is 5.5 kilometers across, but there is a 10-kilometer saddle-like depression with attributes of a large degraded crater. Surface lineations, both grooves and ridges, are prominent on Eros; some probably exploit planes of weakness produced by collisions on Eros and/or its parent body. Ejecta blocks (30 to 100 meters across) are abundant but not uniformly distributed over the surface. Albedo variations are restricted to the inner walls of certain craters and may be related to downslope movement of regolith. On scales of 200 meters to 1 kilometer, Eros is more bland in terms of color variations than Gaspra or Ida. Spectra (800 to 2500 nanometers) are consistent with an ordinary chondrite composition for which the measured mean density of 2.67 +/- 0.1 grams per cubic centimeter implies internal porosities ranging from about 10 to 30 percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.