Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata-small pores on the leaf surface that regulate gas exchange-to maintain a near-constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.
Phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating photosynthesis and other ecosystem processes, as well as competitive interactions and feedbacks to the climate system. We conducted an analysis to evaluate the representation of phenology, and the associated seasonality of ecosystem-scale CO 2 exchange, in 14 models participating in the North American Carbon Program Site Synthesis. Model predictions were evaluated using long-term measurements (emphasizing the period 2000-2006) from 10 forested sites within the AmeriFlux and Fluxnet-Canada networks. In deciduous forests, almost all models consistently predicted that the growing season started earlier, and ended later, than was actually observed; biases of 2 weeks or more were 566-584, doi: 10.1111/j.1365-2486.2011.02562.x This article is a U.S. government work, and is not subject to copyright in the United States.Global Change Biology (2012) 18,typical. For these sites, most models were also unable to explain more than a small fraction of the observed interannual variability in phenological transition dates. Finally, for deciduous forests, misrepresentation of the seasonal cycle resulted in over-prediction of gross ecosystem photosynthesis by +160 ± 145 g C m À2 yr À1 during the spring transition period and +75 ± 130 g C m À2 yr À1 during the autumn transition period (13% and 8% annual productivity, respectively) compensating for the tendency of most models to under-predict the magnitude of peak summertime photosynthetic rates. Models did a better job of predicting the seasonality of CO 2 exchange for evergreen forests. These results highlight the need for improved understanding of the environmental controls on vegetation phenology and incorporation of this knowledge into better phenological models. Existing models are unlikely to predict future responses of phenology to climate change accurately and therefore will misrepresent the seasonality and interannual variability of key biosphere-atmosphere feedbacks and interactions in coupled global climate models.
[1] Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States and Canada. None of the models in this study match estimated GPP within observed uncertainty. On average, models overestimate GPP in winter, spring, and fall, and underestimate GPP in summer. Models overpredicted GPP under dry conditions and for temperatures below 0 C. Improvements in simulated soil moisture and ecosystem response to drought or humidity stress will improve simulated GPP under dry conditions. Adding a low-temperature response to shut down GPP for temperatures below 0 C will reduce the positive bias in winter, spring, and fall and improve simulated phenology. The negative bias in summer and poor overall performance resulted from mismatches between simulated and observed light use efficiency (LUE). Improving simulated GPP requires better leaf-to-canopy scaling and better values of model parameters that control the maximum potential GPP, such as ɛ max (LUE), V cmax (unstressed Rubisco catalytic capacity) or J max (the maximum electron transport rate).
[1] Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO 2 exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO 2 exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans ∼220 site-years, 10 biomes, and includes two large-scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models' ability to simulate the seasonal cycle of CO 2 exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was ∼10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model-data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.
Ongoing shifts in the species composition of Eastern US forests necessitate the development of frameworks to explore how species-specific water-use strategies influence ecosystem-scale carbon (C) cycling during drought. Here, we develop a diagnostic framework to classify plant drought-response strategies along a continuum of isohydric to anisohydric regulation of leaf water potential (Ψ(L)). The framework is applied to a 3-year record of weekly leaf-level gas exchange and Ψ measurements collected in the Morgan-Monroe State Forest (Indiana, USA), where continuous observations of the net ecosystem exchange of CO2 (NEE) have been ongoing since 1999. A severe drought that occurred in the middle of the study period reduced the absolute magnitude of NEE by 55%, though species-specific responses to drought conditions varied. Oak species were characterized by anisohydric regulation of Ψ(L) that promoted static gas exchange throughout the study period. In contrast, Ψ(L) of the other canopy dominant species was more isohydric, which limited gas exchange during the drought. Ecosystem-scale estimates of NEE and gross ecosystem productivity derived by upscaling the leaf-level data agreed well with tower-based observations, and highlight how the fraction of isohydric and anisohydric species in forests can mediate net ecosystem C balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.