To investigate past vegetation change and human activity at the highest elevations on Easter Island, this study examines pollen, phytoliths, diatoms, starch and arthropods preserved in sediment/soil profiles from Rano Aroi crater, and another, newly described wetland in the adjacent, much smaller Rano Aroi Iti depression. A Bayesian age-depth model for Rano Aroi provides adequate certainty for the Late Pleistocene and last *1000 years, but is poorly constrained from 12,000 to 1000 cal BP. The occurrence of cf. Potamogeton and Lycopodium pollen types at this highland site (*425 m altitude), while absent or rare at lowland sites, could well be related to the cooler higher altitude conditions. Smaller quantities of Arecaceae (palm) pollen than at lowland sites indicate that this relatively high-altitude part of the island was near the altitudinal forest limit in the Late Pleistocene, with extensive Asteraceae-dominated shrubland. Arecaceae forest dominated the Holocene, for which there is evidence for a prolonged dry phase. The subsequent disappearance of charcoal and reappearance of diatoms, particularly Eunotia cf. pectinalis, suggest that the dry phase ended prior to human settlement. Polynesian activity is best constrained by abundant microscopic charcoal fragments beginning in a layer at 710 (2r: 645-797) cal BP, and suggesting a period of forest clearance and burning, culminating at 339 (2r: 177-428) cal BP. Thinner soils compared with lowland horticultural sites and 14 C dates of macroscopic Sophora charcoal suggest that the site was occupied after 1670 CE. Newly described terraces, and pollen, phytoliths and starch of cf. Broussonetia papyrifera (paper mulberry), cf. Colocasia esculenta (taro) and Musa (banana) sp. identified in this study show the value of a combined microfossil approach and provide evidence for extension of cultivation of these Polynesian-introduced cultigens to this least accessible part of the island. Rano Aroi Iti yielded a Bayesian 14 C age-depth chronology to a basal age of 1530-1314 cal BP, giving an unexpectedly old age for presumably introduced New World pollen of Sisyrinchium, which occurs throughout the core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.