The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. An observed-to-predicted ratio of events of 0.944 ± 0.016 (stat) ± 0.040 (syst) was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GW th reactors. The results were obtained from a single 10 m 3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 flux measurement after correction for differences in core composition. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter sin 2 2θ13. Analyzing both the rate of the prompt positrons and their energy spectrum we find sin 2 2θ13= 0.086 ± 0.041 (stat) ±0.030 (syst), or, at 90% CL, 0.017 < sin 2 2θ13 < 0.16. We report first results of a search for a non-zero neutrino oscillation [1] mixing angle, θ 13 , based on reactor antineutrino disappearance. This is the last of the three neutrino oscillation mixing angles [2,3] for which only upper limits [4,5] are available. The size of θ 13 sets the required sensitivity of long-baseline oscillation experiments attempting to measure CP violation in the neutrino sector or the mass hierarchy.In reactor experiments [6,7] addressing the disappearance ofν e , θ 13 determines the survival probability of electron antineutrinos at the "atmospheric" squaredmass difference, ∆m 2 atm . This probability is given by:where L is the distance from reactor to detector in meters and E the energy of the antineutrino in MeV. The full formula can be found in Ref.[1]. Eq. 1 provides a direct way to measure θ 13 since the only additional input is the well measured value of |∆m 2 atm | = (2.32Other running reactor experiments [9,10] are using the same technique.Electron antineutrinos of < 9 MeV are produced by reactors and detected through inverse beta decay (IBD): ν e + p → e + + n. Detectors based on hydrocarbon liquid scintillators provide the free proton targets. The IBD signature is a coincidence of a prompt positron signal followed by a delayed neutron capture. We present here our first results with a detector located ∼ 1050 m from the two 4.25 GW th thermal power reactors of the Chooz Nuclear Power Plant and under a 300 MWE rock overburden. The analysis is based on 101 days of data including 16 days with one reactor off and one day with both reactors off.The antineutrino flux of each reactor depends on its thermal power and, for the four main fissioning isotopes, 235 U, 239 Pu, 238 U, 241 Pu, their fraction of the total fuel content, their energy released per fission, and their fission and capture cross-sections. The fission rates and associated errors were evaluated using two predictive and complementary reactor simulation codes: MURE [17,18] and DRAGON [19]. This allowed a study of the sensitivity to the important reactor parameters (e.g.. thermal power, boron concentration, temperatures and densities). The quality of these simulations...
We present the results of a search for dark matter weakly interacting massive particles (WIMPs) in the mass range below 20 GeV/c^{2} using a target of low-radioactivity argon with a 6786.0 kg d exposure. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso. The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 event/keVee/kg/d and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c^{2} for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8-6 GeV/c^{2}.
Borexino has been running since May 2007 at the LNGS laboratory in Italy with the primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity, is optimized for the study of the lower energy part of the spectrum. During the Phase-I (2007Phase-I ( -2010), Borexino first detected and then precisely measured the flux of the 7 Be solar neutrinos, ruled out any significant day-night asymmetry of their interaction rate, made the first direct observation of the pep neutrinos, and set the tightest upper limit on the flux of CNO solar neutrinos. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds, quantify their event rates, describe the methods for their identification, selection or subtraction, and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources, the detailed modeling of the detector response, the ability to define an innermost fiducial volume with extremely low background via software cuts, and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the 7 Be neutrino interaction rate. The period, the amplitude, and the phase of the observed modulation are consistent with the solar origin of these events, and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of Phase-I results in the context of the neutrino oscillation physics and solar models are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.