The interaction of an E/A=57.6-MeV 17 Ne beam with a Be target was used to populate levels in 16 Ne following neutron knockout reactions. The decay of 16 Ne states into the three-body 14 O+p+p continuum was observed in the High Resolution Array (HiRA). For the first time for a 2p emitter, correlations between the momenta of the three decay products were measured with sufficient resolution and statistics to allow for an unambiguous demonstration of their dependence on the long-range nature of the Coulomb interaction. Contrary to previous measurements, our measured limit Γ < 80 keV for the intrinsic decay width of the ground state is not in contradiction with the small values (of the order of keV) predicted theoretically.PACS numbers: 25.10.+s, 23.50.+z, 21.60.Gx, 27.20.+n Introduction -Two-proton (2p) radioactivity [1] is the most recently discovered type of radioactive decay. It is a facet of a broader three-body decay phenomenon actively investigated within the last decade [2]. In binary decay, the correlations between the momenta of the two decay products are entirely constrained by energy and momentum conservation. In contrast for three-body decay, the corresponding correlations are also sensitive to the internal nuclear structure of the decaying system and the decay dynamics providing, in principle, another way to constrain this information from experiment. In 2p decay, as the separation between the decay products becomes greater than the range of the nuclear interaction, the subsequent modification of the initial correlations is determined solely by the Coulomb interaction between the decay products. As the range of the Coulomb force is infinite, its long-range contribution to the correlations can be substantial, especially, in heavy 2p emitters.
Neutron transfer reactions with fast secondary beams of 17 Ne, 15 O, and 9 C have been studied with the HiRA and CAESAR arrays. Excited states of 18 Ne, 16 O, and 10 C in the continuum have been identified using invariant-mass spectroscopy. The best experimental resolution of these states is achieved by selecting events where the decay fragments are emitted transverse to the beam direction. We have confirmed a number of spin assignments made in previous works for the negative-parity states of 18 Ne. In addition we have found new higher-lying excited states in 16 O and 18 Ne, some of which fission into two ground-state 8 Be fragments. Finally for 10 C, a new excited state was observed. These transfer reactions were found to leave the remnant of the 9 Be target nuclei at very high excitation energies and maybe associated with the pickup of a deeply-bound 9 Be neutron.
The structure of the extremely proton-rich nucleus 11 8 O3, the mirror of the two-neutron halo nucleus 11 3 Li8, has been studied experimentally for the first time. Following two-neutron knockout reactions with a 13 O beam, the 11 O decay products were detected after two-proton emission and used to construct an invariant-mass spectrum. A broad peak of width ∼3 MeV was observed. Within the Gamow coupled-channel approach, it was concluded that this peak is a multiplet with contributions from the four-lowest 11 O resonant states: J π =3/2 − 1 , 3/2 − 2 , 5/2 + 1 , and 5/2 + 2. The widths and configurations of these states show strong, non-monotonic dependencies on the depth of the p-9 C potential. This unusual behavior is due to the presence of a broad threshold resonant state in 10 N, which is an analog of the virtual state in 10 Li in the presence of the Coulomb potential. After optimizing the model to the data, only a moderate isospin asymmetry between ground states of 11 O and 11 Li was found.
Particle-decaying states of the light nuclei 11,12 N and 12 O were studied using the invariant-mass method. The decay energies and intrinsic widths of a number of states were measured, and the momentum correlations of three-body decaying states were considered. A second 2p-decaying 2 + state of 12 O was observed for the first time, and a higher energy 12 O state was observed in the 4p+2α decay channel. This 4p+2α channel also contains contributions from fission-like decay paths, including 6 Beg.s.+ 6 Beg.s.. Analogs to these states in 12 O were found in 12 N in the 2p+ 10 B and 2p+α+ 6 Li channels. The momentum correlations for the prompt 2p decay of 12 Og.s. were found to be nearly identical to those of 16 Neg.s., and the correlations for the new 2 + state were found to be consistent with sequential decay through excited states in 11 N. The momentum correlations for the 2 + 1 state in 12 O provide a new value for the 11 N ground-state energy. The states in 12 N/ 12 O that belong to the A=12 isobaric sextet do not deviate from the quadratic isobaric multiplet mass equation (IMME) form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.